

The Ethics of Artificial Intelligence in the Oil and Gas Industry: Navigating Environmental Impact, Spill Response, and Data Governance in Nigeria.

Jemimah Chuntar
Abuja, Nigeria
msmimahdaniel@gmail.com

Abstract

The deployment of Artificial Intelligence (AI) in the oil and gas industry raises profound ethical questions, particularly in jurisdictions such as Nigeria where regulatory enforcement, spill response, and data transparency remain persistent challenges. AI technologies hold clear potential: advanced monitoring systems can enhance early detection of oil spills; natural language models can improve the consistency of compliance reporting; and automated auditing tools can address chronic under-reporting of environmental incidents. Yet, these opportunities are tempered by ethical risks, including algorithmic bias, unequal access to technological capacity, and the reliability of data in environments where record-keeping is fragmented or politicized. This paper evaluates the dual role of AI as both a solution to systemic governance failures and a source of new ethical dilemmas. Drawing on legal and policy frameworks in Nigeria, it examines how AI could strengthen environmental stewardship, enhance regulatory compliance, and build public trust—while also outlining safeguards against misuse, opacity, and dependency on flawed data inputs. The argument is made for a principled, ethics-driven approach to AI adoption in oil and gas governance, one that integrates environmental responsibility, operational safety, and robust data governance into the core of technological innovation.

Keywords

Artificial Intelligence Ethics, Oil Spills, Environmental Compliance, Data Governance, Oil and Gas Law, Nigeria

1.0 Introduction

Artificial Intelligence (AI) has rapidly emerged as a transformative force in industries across the globe. From healthcare and finance to manufacturing and national security, AI applications are redefining how decisions are made and how efficiency is achieved. The oil and gas industry, a historically data-intensive and risk-sensitive sector, has equally embraced this digital revolution. In countries such as Norway, the United States, and the United Arab Emirates, AI systems now

optimize exploration, monitor environmental impact, and predict equipment failure (Floridi & Cowls, 2019).

In Nigeria, where the petroleum sector accounts for a significant portion of export earnings and government revenue, the integration of AI is gradually gaining traction. However, the ethical, legal, and socio-political implications of this integration remain underexplored. The Nigerian context is particularly complex: issues of environmental degradation, poor spill response, and weak data governance intersect with broader questions about accountability, equity, and the public good.

This paper examines how AI adoption within Nigeria's oil and gas sector intersects with ethical considerations surrounding environmental impact, spill response, and data governance. It argues that while AI offers enormous potential to enhance environmental monitoring, transparency, and compliance, it also raises new dilemmas about fairness, privacy, and human oversight.

2.0 Conceptual and Theoretical Framework

Artificial Intelligence (AI) refers broadly to computational systems capable of performing tasks that typically require human intelligence—such as learning, reasoning, perception, and decision-making (Bryson, 2020). Within industrial contexts, AI manifests in machine learning algorithms, predictive analytics, robotics, and natural language processing systems.

Ethical analysis of AI involves evaluating how these technologies align with moral and social values. According to Floridi and Cowls (2019), ethical AI must adhere to five key principles: beneficence, non-maleficence, autonomy, justice, and explicability. These principles emphasize that technological innovation should advance human welfare, avoid harm, respect autonomy, ensure fairness, and provide transparency.

In environmental governance, AI ethics overlap with sustainability ethics and socio-technical systems theory

(Attfield, 2014). These frameworks consider how technologies influence human institutions and ecosystems. When applied to Nigeria's oil and gas sector, this means examining how AI tools can be designed and used in ways that uphold justice, environmental integrity, and social inclusion.

3.0 The Nigerian Context: AI in the Oil and Gas Industry

Nigeria's petroleum industry has long been characterized by both economic promise and environmental peril. The Niger Delta—home to much of the country's oil production—has suffered extensive ecological damage due to spills, gas flaring, and sabotage. Reports by the United Nations Environment Programme (UNEP, 2011) and the National Oil Spill Detection and Response Agency (NOSDRA, 2022) reveal persistent failures in monitoring and remediation.

AI technologies offer potential remedies. Predictive analytics can detect early signs of equipment failure, satellite imagery can monitor illegal bunkering, and natural language processing can standardize compliance reporting. Yet, without ethical and institutional safeguards, these tools could also reproduce or even amplify existing governance failures.

The Nigerian government, through institutions such as the Nigerian Upstream Petroleum Regulatory Commission (NUPRC) and NOSDRA, is beginning to explore AI-driven solutions for monitoring compliance and environmental impact. However, challenges persist in data availability, inter-agency coordination, and digital infrastructure. Many operators remain hesitant to share real-time data due to fears of regulatory scrutiny or competitive disadvantage (Transparency International, 2021).

Thus, while AI adoption is growing, its ethical implementation—particularly in ensuring environmental justice, equitable access, and transparent data governance—remains an urgent policy priority.

4.0 Ethical Issues in Environmental Impact, Spill Response, and Data Governance

AI's integration into Nigeria's oil and gas industry presents both opportunity and ethical complexity. This section explores the ethical dimensions within three key operational domains: environmental impact, spill response, and data governance.

4.1 Environmental Impact and AI-Driven Stewardship

AI can enable continuous, predictive monitoring of ecosystems through drone imaging, satellite surveillance, and machine-learning models that detect anomalies in pipeline pressure or water contamination. Such systems can improve the timeliness of remediation and reduce environmental degradation (Peters et al., 2020).

However, when corporate entities control these systems without transparent oversight, data may be selectively reported or withheld. This lack of transparency undermines accountability and violates the ethical principles of justice and beneficence. Additionally, large-scale AI computation consumes significant energy, which can increase the industry's own carbon footprint if powered by fossil fuels (Vinuesa et al., 2020). Ethical environmental AI must therefore integrate green-computing principles and public data access.

4.2 Spill Response and the Ethics of Accountability

Machine-learning models can forecast spill trajectories and assist responders in allocating resources efficiently (Liang et al., 2021). Yet, in the Niger Delta, where communities often contest official spill reports, reliance on corporate-controlled AI tools may marginalize local knowledge.

Ignoring community data creates a new digital divide and violates inclusivity.

Ethical spill-response AI should combine technological detection with participatory verification—community input, open mapping, and human oversight (UNESCO, 2021).

Transparency in algorithm design and explainability of results are essential to ensure accountability.

4.3 Data Governance and Algorithmic Integrity

Reliable data underpin every AI system. In Nigeria, environmental and production data remain fragmented across agencies, and political influence often distorts reporting. Ethical data governance therefore requires adherence to transparency, consent, privacy, and accountability principles (NITDA, 2019).

Periodic algorithmic audits and mandatory disclosure of training datasets can prevent bias and manipulation. Regulators such as NOSDRA and NUPRC must be empowered to access proprietary AI outputs for

verification, ensuring that technological sophistication does not obscure ethical responsibility.

5.0 Case Reflections

5.1 Shell's Predictive-Maintenance Systems

Shell Nigeria uses AI-based predictive-maintenance tools that analyse sensor data to forecast equipment failures, reducing downtime and spill risk. However, these models are proprietary, and regulators rarely access their raw data. This opacity hinders verification of environmental claims (Adewumi, 2023). Ethical practice demands that corporations disclose performance metrics and enable third-party audits.

5.2 NOSDRA's Data Challenges

NOSDRA's online Oil Spill Monitor was designed for public transparency, yet it depends on company-submitted data that are often delayed or incomplete (NOSDRA, 2022). Integrating satellite-based AI to cross-check reports could enhance reliability, but only if governance frameworks guarantee data authenticity and audit trails.

5.3 LexPeta AI and ESG Governance

LexPeta AI—a Nigerian innovation—applies natural-language processing to energy-sector contracts for ESG risk detection and regulatory transparency. Its ethical-by-design approach illustrates how local solutions can align technology with social context. Scaling such systems will require state investment, ethical certification, and alignment with UNESCO (2021) principles.

5.4 Comparative Insight: Norway and the UAE

Norway's Petroleum Safety Authority mandates open environmental data and allows academic review of AI monitoring tools (Nilsen & Solberg, 2021). The UAE's National AI Strategy 2031 similarly embeds human-centric ethics. Nigeria can adapt these precedents by institutionalizing ethical review boards and AI impact assessments in its energy regulation.

6.0 Policy and Governance Implications

Ethical integration of AI in Nigeria's petroleum governance requires reforms that bridge technological innovation with accountability.

6.1 Institutional Accountability

AI ethics must be embedded in inter-agency coordination among NUPRC, NOSDRA, and the NMDPRA. Establishing a National AI Ethics and

Governance Council would standardize oversight and promote transparency across the energy value chain.

6.2 Legislative Development

The Petroleum Industry Act (2021) and Nigeria Data Protection Regulation (2019) should be expanded to cover algorithmic transparency, audit rights, and penalties for data manipulation. AI vendors should undergo ethical certification before deployment in critical infrastructure.

6.3 Capacity Building and Ethical Literacy

Engineers, policymakers, and regulators require training in AI ethics, data stewardship, and environmental justice. Partnerships with UNESCO, OECD, and Nigerian universities can institutionalize continuous professional education in responsible AI.

6.4 Public Participation and Trust

Inclusive governance strengthens legitimacy. Community representatives should participate in AI project design and have access to spill and compliance data. Crowdsourced verification and grievance channels would enhance fairness and trust.

6.5 International Cooperation

Nigeria should align with UNESCO (2021) and OECD (2019) ethical frameworks to harmonize national policy with global standards, facilitating responsible foreign investment and regional leadership in ethical AI.

7.0 Recommendations

1. Adopt and Localize the UNESCO AI Ethics Framework. Incorporate its four pillars—human dignity, justice, inclusiveness, and environmental flourishing—into national petroleum governance strategies.
2. Create a National AI Ethics and Governance Council. Mandate inter-agency collaboration to develop uniform AI standards, certification, and monitoring for all energy-sector applications.
3. Institutionalize AI Ethics Impact Assessments. Require every oil and gas operator to submit an AI-Ethics Impact Report prior to deployment, akin to Environmental Impact Assessments (EIAs).
4. Strengthen Data Governance and Transparency. Develop interoperable, tamper-proof databases accessible to regulators, civil society, and researchers. Promote real-time data disclosure.

5. Enhance Community Participation. Implement participatory AI systems that allow affected communities to verify or contest AI-generated reports.
6. Mandate Algorithmic Accountability. Legally require periodic algorithmic audits, bias testing, and explainability documentation for all AI systems used in regulatory contexts.
7. Encourage Green and Sustainable AI. Incentivize low-carbon data centers and renewable-powered computing to reduce AI's environmental footprint.
8. Support Indigenous Innovation. Invest in home-grown projects such as LexPeta AI to ensure contextually grounded, ethically responsible solutions.

8.0 Conclusion

Artificial Intelligence presents Nigeria's oil and gas industry with a double-edged opportunity: it can enhance transparency, safety, and environmental responsibility, yet it can also reproduce inequities and opacity if adopted without ethical guardrails.

The analysis demonstrates that ethical frameworks—such as UNESCO's Recommendation on the Ethics of Artificial Intelligence (2021)—are not merely aspirational but operationally necessary.

Embedding these principles into legislation, data governance, and institutional culture can transform AI from a corporate efficiency tool into a public-interest technology.

Ultimately, AI's success in the petroleum sector will not be measured solely by predictive accuracy or automation gains, but by its contribution to justice, accountability, and ecological stewardship. Nigeria stands at a pivotal moment to lead Africa in building a responsible, human-centered AI ecosystem for sustainable energy governance.

9.0 References

Adewumi, T. (2023). Artificial intelligence applications in Nigeria's oil and gas operations: Opportunities and challenges. *Journal of Energy Studies*, 17(2), 54–72.

Attfield, R. (2014). Environmental ethics: An overview for the twenty-first century. Polity Press.

Bryson, J. J. (2020). The artificial intelligence of the ethics of artificial intelligence: An introductory

overview for law and regulation. *Technology and Regulation Journal*, 2020(1), 1–13.

Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. *Harvard Data Science Review*, 1(1), 1–15.

Jasanoff, S. (2016). The ethics of invention: Technology and the human future. W. W. Norton & Company.

Liang, J., Wang, P., & Zhang, Y. (2021). Deep learning approaches for oil spill detection from satellite imagery. *Remote Sensing of Environment*, 252, 112–123.

National Information Technology Development Agency (NITDA). (2019). Nigeria Data Protection Regulation (NDPR).

National Oil Spill Detection and Response Agency (NOSDRA). (2022). Annual oil spill report. Federal Government of Nigeria.

Nigerian Upstream Petroleum Regulatory Commission (NUPRC). (2023). Annual petroleum industry report.

Nilsen, T., & Solberg, H. (2021). Transparency and technology in Norway's petroleum governance. *Nordic Energy Policy Journal*, 6(4), 44–62.

Peters, R., Andersen, M., & Olsen, J. (2020). Machine learning for offshore oil spill detection in satellite imagery. *Marine Pollution Bulletin*, 154(1), 111–128.

Transparency International. (2021). Fueling corruption: The oil industry and public accountability in Nigeria.

UNESCO. (2021). Recommendation on the ethics of artificial intelligence. Paris: UNESCO Publishing.

UNEP. (2011). Environmental assessment of Ogoniland. United Nations Environment Programme.

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., & Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature Communications*, 11(1), 1–10.