
International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

91

The Emergence of Multimodal AI in Software Development: What to Expect in the Future?

Imane Boumedra

Final University, Cyprus.

imane.boumedra@final.edu.tr

Ibrahim Adeshola

Final University, Cyprus.

Ibrahim.adeshola@final.edu.tr

Abstract

Multimodal artificial intelligence (AI) is reshaping the

software development landscape by extending coding

assistance beyond text-based prompts into voice, image,

video, and design- driven workflows. This study investigates

how multimodal AI is influencing current development

practices, the challenges it introduces, and what trends can be

expected between 2025 and 2030. Using a mixed-method

approach that combines literature synthesis with empirical

analysis of 3,998 Stack Overflow posts (covering 3,297

questions and 701 answers), we examine developer

sentiment, tool adoption, and emerging themes in community

discourse. The findings indicate that while 67% of posts

express positive sentiment, developers are increasingly

focused on issues of trust, integration, and control, especially

when AI systems interact with sensitive files or introduce

unexpected behaviors. Tools such as ChatGPT and GitHub

Copilot dominate discussions, reflecting both their versatility

and integration challenges, while smaller tools like Claude,

Amazon CodeWhisperer, and Figma to Code receive highly

positive but niche attention. Looking ahead, multimodal AI is

expected to play a central role in automated UI/UX

generation, debugging, architecture design, and DevOps

workflows, though ethical concerns, workforce disruptions,

and intellectual property risks remain unresolved. This study

contributes to ongoing debates by highlighting both the

opportunities and risks of multimodal AI, and by outlining

practical steps developers and organizations can take to

prepare for an AI-driven software engineering future.

Keywords

Multimodal Artificial Intelligence; Software Development;

AI-assisted Coding Tools; Developer Adoption; Sentiment

Analysis; Ethical and Security Challenges.

1. Introduction

The rapid rise of artificial intelligence in software

engineering has transitioned from text-based code

completion toward multimodal systems that integrate text,

images, audio, and video. Unlike early coding assistants such

as GitHub Copilot and Amazon CodeWhisperer, modern

multimodal AI tools now support screenshot-to-code

generation, voice-driven refactoring, and visual debugging,

enabling richer interactions across the software development

lifecycle (George & Harendra, 2024). This transformation is

accelerating industry adoption, with the recent 2024 Stack

Overflow Developer Survey showed 62% of developers were

using AI tools daily, up from 44% in 2023, with 76%

expecting to use them this year (StackOverflow, 2024), and

market forecasts projecting multimodal AI growth at a CAGR

of 34.4% to reach $10.89 billion by 2030 (Grand View

Research, 2024). Multimodal AI is already altering the nature

of software engineering work. It enables automated UI

generation from design mockups (Dave et al., 2021; Durgam

et al., 2025), architecture synthesis from diagrams

(Ramachandran, 2025), and bug detection through combined

log, code, and screenshot analysis (Singh & Sudha, 2024).

Furthermore, emerging paradigms such as collaborative

agents enhance pair programming by integrating seamlessly

into IDEs and communication platforms (Ma et al., 2024).

These advances signal a shift toward AI-augmented

development ecosystems, where human and AI collaborate

continuously across design, coding, testing, and deployment.

However, the emergence of multimodal AI also raises critical

challenges and risks. Developers report frustrations with

inconsistent IDE support (Preethi et al., 2024), ethical

concerns around intellectual property (Lalanda & Roig,

2025), and security risks tied to unsafe code generation

(Espinha Gasiba, 2024). Beyond technical challenges, AI

adoption disrupts workforce roles by automating repetitive

tasks while creating demand for prompt engineering,

architecture, and AI-human collaboration skills (Kinder et al.,

2024). The literature also highlights persistent issues of bias,

data privacy, and the ownership of AI-generated code, raising

questions about the sustainability and governance of AI-

driven development practices (Oh et al., 2024; OWASP

Foundation, 2024). Against this backdrop, this study

addresses three guiding questions:

• How is multimodal AI transforming software

development today?

• What trends are likely to shape its evolution

between 2025 and 2030?

• What should developers and companies prepare for

in adopting these technologies responsibly?

Drawing on both academic research and empirical evidence

from Stack Overflow discussions, this paper provides a

comprehensive analysis of the opportunities, risks, and future

trajectories of multimodal AI in software engineering.

2. Literature Review

The ability of multimodal AI models to jointly reason across

text, images, audio, and video is revolutionizing software

engineering workflows by providing richer debugging

signals (such as screenshots, logs, and telemetry), automated

UI/UX development, and new coding modalities (such as

design-to-code and voice-to-refactor). Recent developments

in the field and in research show a distinct move away from

text-only coding assistants and towards programs that can

https://doi.org/10.65025/ICAIC25091b

mailto:imane.boumedra@final.edu.tr
mailto:Ibrahim.adeshola@final.edu.tr

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

92

take in and incorporate audio and visual input (Akhtar, 2024;

Patel, 2025). This allows for automated test generation,

interactive debugging, and quicker front-end development.

Using academic articles and industry advancements during

2024–2025, this literature review looks at the present and

future directions of multimodal AI in software development.

It summarizes research on how multimodal AI systems are

changing software architectural design, debugging

procedures, and conventional coding techniques.

2.1. Evolution from Text-Based to Multimodal Coding

Assistants

Text-based code completion was the main focus of early AI

coding aids like Amazon Code Whisperer (now rebranded as

Amazon Q Developer in 2024) (Amazon Web Services,

2024) and GitHub Copilot. However, recent developments

are changing the paradigm in favor of multimodal systems

that can receive visual inputs, such as brief screencasts,

Figma mockups, and screenshots, and produce useful

frontend code using CSS, React components, and responsive

layouts. This development is in line with a larger trend in the

industry: interactive multimodal AI systems are expected to

expand at a compound annual growth rate (CAGR) of 34.4%

to reach $10.89 billion by 2030 (Grand View Research,

2024). Recent industry surveys show that close to 80% of

developers favor AI tools, with more than 40% using AI tools

in their daily development duties in 2024, demonstrating

rapid mainstream adoption (Al Haque et al, 2024; Stack

Overflow, 2024).

Figure 1: Multimodal AI market size by region, and growth

forecast (2025-2030)

A feature that directly helps processes like automatic UI

development, GitHub Copilot's multi- model update, which

was unveiled at Universe 2024, combines models from

Anthropic, Google, and OpenAI and enables developers to

assign tasks to various models according to latency, cost, and

capability requirements (GitHub, 2024). Similarly, Amazon

Q Developer has expanded its multimodal capabilities with

enhanced region support and enterprise integration features

(Amazon Web Services, 2024). Enterprise adoption

demonstrates significant impact: BT Group generated over

100,000 lines of code using Amazon's AI coding tools in four

months, automating 12% of repetitive work for 1,200

developers (BT Group, 2024; Anima,2024) stated that a

design file can be converted into responsive, production-

ready code using near- production pipelines, as shown by

vendor solutions for Figma→React conversion.

Regarding research, NVIDIA's Open Frontier-Class NVLM

Two prominent paradigms for multimodal large language

models were formalized by multimodal LLMs (Dai et al.,

2024; Si et al., 2025), which established the foundation for

code generation systems that integrate textual, visual, and

even temporal inputs. When taken as a whole, these academic

and industrial developments suggest that multimodal AI

assistants will eventually be integrated straight into software

engineering processes, facilitating interactive debugging,

adaptive model selection techniques, and richer design-to-

code automation.

2.2. Multimodal Input Processing in Development

Environments

Recent developments in multimodal AI have extended the

capabilities of software development beyond conventional

text-based prompts, allowing for voice-driven and visual

coding workflows that expedite the design-to-deployment

process. Modern technologies are now able to translate

screenshots to code, turning Figma designs and UI mock-ups

straight into usable frontend implementations in frameworks

like React or Vue.js (Salvi, 2023). Additionally, hand- drawn

architecture recognition approaches bridge the gap between

early design artefacts and deployment automation by

converting sketched system diagrams into executable cloud

infrastructure configurations (Zhang et al., 2025). Visual

debugging agents provide deeper, context-aware

troubleshooting capabilities for debugging by analysing

screenshots of application failures along with relevant code

and logs (Puvvadi et al., 2025).

Similarly voice-driven development is not left out in the rapid

advancement of multimodal AI. With the advancement of

voice-based programming owing to parallel research and

industrial tools, developers can now issue natural language

commands for refactoring ("Refactor this Python function

into Rust") (OpenAI, 2024) or participate in conversational

code reviews, in which the system uses spoken language to

explain logic, identify inefficiencies, and suggest

optimisations (Ross et al., 2023). Additionally, by automating

the creation of test scripts from spoken requirements, voice-

driven testing lessens the conflict between the phases of

definition and validation (Görer al., 2024). These modalities

collectively demonstrate the trend towards multimodal

interaction models, which enable developers to switch

between text, images, and voice with ease, lowering cognitive

load and speeding up iteration cycles.

2.3. Enhanced Debugging Through Multimodal Context

Current multimodal AI debugging systems can jointly

process source code, error logs, user- submitted screenshots

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

93

and video reproductions, runtime telemetry data (e.g., CPU,

memory, network), and stack traces with visual context,

enhancing the fidelity and relevance of bug diagnoses. The

debugging-specific LLM Kodezi Chronos reduces debugging

time by 40 % and iteration count by 65 % compared to

leading models like GPT-4.1 and Claude, achieving a fix

accuracy of 67.3 % in real-world scenarios (Khan et al.,

2025). AI-driven debugging agents such as DebugMate

process code, logs, stack traces, and documentation,

identifying root causes and resolving issues in significantly

less time than standard models (Modi et al., 2025). Earlier

studies demonstrate that combining multimodal inputs logs,

screenshots, video clips, produces superior debugging

suggestions compared to text-only prompts, though

reliability depends on tool-specific log parsing to handle

domain-specific formats (Neptune.ai,2025). Concrete

evaluations from the ASE-track series include log analysis

using ChatGPT-like agents, which show promise in parsing

but reveal limitations in consistency, scalability, and handling

unstructured logs (Le & Zhang, 2023; Mudgal & Wouhaybi,

2023).

2.4. AI-Augmented Software Architecture and Design

Recent advances in multimodal AI have enabled automatic

documentation generation by combining code repositories

with meeting transcripts and design conversations.

Multimodal AI tools can generate architecture visualizations,

which convert descriptions in natural language into

blueprints and system diagrams. Furthermore, Khan et al.

(2022) reported that code-to- documentation synthesis

enables real-time documentation updates depending on

commit messages and code modifications. Therefore, parallel

advancements in design pattern identification demonstrate

that multimodal AI models are capable of identifying

architectural anti-patterns through the analysis of both code

structures and system component visual representations (Wei

et al., 2024; Çiçek et al., 2024). These models are capable of

converting high-level natural language requests and sketches

into architecture diagrams and startup code in addition to

detection (Wei et al., 2024). This is what emerging

frameworks refer to as "automated software engineering with

rich context," wherein inputs like telemetry, hand-drawn

schematics, meeting transcripts, and user interface

screenshots are combined to create documentation and

suggest changes to the system architecture (Yue, 2024).

Lastly, design-to- code industry technologies, such as Figma

integrations, provide concrete proof of this trend by

showcasing the increasing use of automated documentation

and design workflows.

2.5. Testing & QA Automation

 Multimodal AI is reshaping software testing by introducing

capabilities that extend far beyond traditional approaches.

Multimodal AI, now combining self-healing automation,

voice-driven test scripting, and visual regression techniques,

is making the systems redefine how quality assurance is

performed. For example, visual regression testing can now

compare user interface screenshots across builds, devices,

and browsers using graph-based models that go beyond

conventional pixel-by-pixel matching. These algorithms

detect subtle variations while preserving an understanding of

context and layout, thereby reducing false positives and

capturing meaningful design changes (Ragel et al., 2023).

Industry platforms such as Applitools, Percy (BrowserStack),

and LambdaTest have already begun to operationalize these

capabilities (Pandhare et al., 2025; Lost-Pixel, 2024; Katalon,

2025).

Another major advancement is voice-driven testing, where

natural language instructions, such as “Test the checkout

process under high load” or “Simulate 1,000 users logging in

simultaneously,” are translated into executable scripts for

frameworks like Playwright, Cypress, and Selenium. This

shift lowers the barrier to test creation by allowing non-

specialists to express requirements in plain language.

Complementing this, self-healing automation allows

multimodal AI to automatically detect broken selectors

during runtime, identify reliable alternatives, patch scripts,

and even generate pull requests with clear justifications

(Saarathy et al., 2024). Research shows that large language

models can repair flaky or failing tests with success rates

ranging between 51% and 83%, significantly reducing the

manual effort required for maintenance (Fatima et al., 2023).

Finally, these innovations integrate seamlessly into

continuous integration and delivery (CI/CD) pipelines,

providing real-time feedback on user interface consistency,

test stability, and performance regressions with minimal

setup (Katalon, 2025). This shows that multimodal AI testing

solutions enhance both the reliability and efficiency of

quality assurance processes, accelerating development cycles

while reducing long-term maintenance costs.

2.5. AI "Full-Stack Developers"

Full applications can now be scaffolded from text and

mockups by multimodal AI agents and this capability stems

from new approaches to AI-Native Software Engineering (SE

3.0), in which AI systems transform from copilots into

intelligent collaborators that comprehend developer intent,

write full-stack code, and coordinate processes in the design,

user interface, backend, DevOps, and runtime domains

(Mathews et al., 2024). Third-generation AI solutions,

including agentic DevOps systems, which integrate across

the Software Development Lifecycle (SDLC) and automate

development pipelines from start to finish, are driving

industry momentum towards this paradigm (TechRadar Pro,

2025). It is anticipated that autonomous development

capabilities would flourish between 2025 and 2030. In order

to free up human engineers to concentrate on high-level,

strategic design, a 2025 study presents a roadmap towards AI

systems that manage full-stack chores, including database

schemas, DevOps pipeline setup, performance tuning,

security enforcement, and UI design and backend API

development (Gu et al., 2025). AI-powered end-to-end

project management is coming soon. A move towards truly

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

94

autonomous software engineering is indicated by research

and industry narratives that, although still in their infancy,

anticipate AI managing complete software projects from

requirements elicitation to production deployment with little

to no human participation (Mathews et al., 2024; TechRadar

Pro, 2025; Gu et al., 2025).

2.6. Real-Time Collaborative AI Pair Programmers

By comprehending team communication patterns and coding

styles across multiple developers, offering contextually

aware suggestions during concurrent work, resolving merge

conflicts through multimodal context, and enabling real-time

code review with visual explanations and recommendations,

future AI systems are expected to improve software

development collaboration. (Noor et al., 2022; Lin et al.,

2023). In order to provide ongoing and contextual support

throughout the development lifecycle, these collaborative AI

systems are also anticipated to seamlessly connect with

development environments and communication platforms

like Slack, Discord, and Microsoft Teams (Vasilescu et al.,

2015; Jiang et al., 2023).

Since the AI systems can create entire software applications

from natural language, including UI design, business logic,

database design, security compliance, and even

documentation, are becoming more and more common,

according to research roadmaps and new industry tools. The

increasing viability of natural-language-driven full-stack

creation is demonstrated by systems such as Replit Agent v2,

which can now translate plain-English descriptions into

front- and back-end apps (Replit, 2025). However,

conversational software development is anticipated to be

supported by future systems. Self-feedback loops are used by

models like Self-Refine, which allow for iterative

improvement of outputs, including code, without the need for

extra training data. This feature supports interactive

development, in which natural language feedback is used to

evolve applications (Madaan et al., 2023).

2.7. AI-Driven DevOps & Autonomous Deployments

A shift from reactive human-driven troubleshooting to

proactive, AI-driven resilience engineering is being

anticipated by emerging research, which envisions

autonomous DevOps systems where large-scale AI models

continuously monitor application and infrastructure logs,

identify anomalies, perform automated root-cause analysis,

and proactively suggest or even execute corrective actions

like safe rollbacks and redeployments (Ait et al, 2024;

Berardinelli., 2025). This will improve mean time to recovery

(MTTR) and reduce downtime. Also, beyond log analysis,

comprehensive infrastructure optimization is one of the

projected skills. Automatic scaling of computing and storage

resources in response to user demand and application

workloads will be made possible by AI-driven controllers

(Huang et al., 2022). Perumallapalli et al. (2021) argued that

preventive remediation of potential system faults can operate

in parallel with predictive maintenance supported by time-

series forecasting and anomaly detection. Building on this,

recent developments highlight cost-conscious orchestration

solutions that optimize both performance and economic

efficiency in multi-cloud and hybrid-cloud environments

(Tuli et al., 2020). In addition, real-time security monitoring

enhanced with adaptive threat detection and response

mechanisms has emerged as a critical capability for ensuring

resilience in AI-driven DevOps pipelines (Moustafa et al.,

2019).

Deployment pipelines will also become more independent in

the future where the full software delivery lifecycle,

including integration testing, staging, production release,

canary rollouts, and automated rollback processes, will be

coordinated by AI systems (Zhai et al., 2021).

Moreover, to reduce risk during deployment, these pipelines

will make use of policy optimization and reinforcement

learning (Muhammad et al., 2023). Importantly, in mission-

critical settings, such end-to-end automation minimizes

human intervention while preserving safety, auditability, and

compliance (Malek et al., 2017).

2.8. Challenges, Risks, Ethical & Legal Concerns

According to recent study, sophisticated software projects

face considerable difficulties in preserving coherence across

several modalities (speech, images, and code). According to

studies, the quantity of multimodal information that can be

processed concurrently is limited by context window

restrictions in existing large language models, especially for

large-scale enterprise applications (Bubeck et al., 2023; L et

al., 2023). Although AI coding tools increase developer

productivity, if they are not educated with secure coding best

practices, they may produce code with unsafe patterns.

According to empirical research, between 15 and 25 percent

of AI-generated code needs extra scrutiny and changes in

order to satisfy security requirements (Pearce et al., 2025;

Vaithilingam et al., 2022). Industry standards place a strong

emphasis on integrating AI-aware code review and static

analysis procedures into development processes (OWASP

Foundation, 2024). Furthermore, various development

environments continue to present integration issues.

Adoption is hampered by research showing inconsistent API

support and performance differences among IDEs (e.g., VS

Code, JetBrains, Vim). According to studies, 40–60% of

development teams have trouble integrating multimodal AI

tools into their current toolchains (Eindhoven University of

Technology, 2025).

There are also unresolved issues around code ownership and

intellectual property rights are brought up by AI models

trained on either public or proprietary codebases.

Remarkably, a thorough developer poll indicates widespread

knowledge and worry about the uncertainty surrounding the

ownership of AI-generated code, with requests for tools that

track provenance and more transparent licensing guidelines

to avoid disputes (Stalnaker et al., 2024). The critical need for

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

95

compliance procedures is further highlighted by the

LiCoEval benchmark, which shows that even top models can

occasionally generate code that is remarkably comparable to

licensed repositories but do not include the appropriate

licenses (Xu et al., 2024). Another major concern is how AI

tools is changing the nature of the workforce. Routine coding

tasks are becoming more automated, while positions in

prompt engineering, system architecture, and AI-human

cooperation are growing. According to worldwide estimates,

up to 30% of occupations may experience significant task

disruptions from AI (Kinder et al., 2024), and workforce

evaluations point to a trend towards skill-based recruiting,

with AI competencies becoming more valued than traditional

degrees (Ehlinger et al., 2023).

Bias is not left out in many of the concerns raised in the

literature. AI code generators may propagate unsafe or

ineffective patterns in the absence of carefully selected, high-

quality training data, which could lead to the growth of

technical debt or vulnerabilities. To reduce such risks, it is

currently advised by strong industry norms to incorporate AI-

aware static analysis, controlled code review methods, and

curated datasets (Stalnaker et al., 2024). Lastly, multimodal

AI systems processing code, visuals, and audio elevate risks

around data privacy and IP leakage, especially in cloud-

integrated tooling.

3. Methodology and Analysis

Data for this study were collected from Stack Overflow using

Python scripts with the “Search StackOverflow” and “Write

CSV” operators. Only English-language questions and

answers relevant to the search phrase were included. Between

2024-01-01 11:14:27 and 2025-08-06 20:59:11, a total of

3,998 entries were retrieved, consisting of 3,297 questions

and 701 answers, with an average of 0.21 answers per

question. The dataset reflected active community

engagement, with questions receiving an average score of

0.47 (range –7 to 36), an average of 479 views (maximum

34,684), and 312 questions surpassing 1,000 views.

Frequently occurring tags included AI/ML (501), GitHub

Copilot (120), and Code Generation (77), while top search

terms such as tag:openai-api (499) and tag:intellij-idea (487)

highlighted developer interest in AI-assisted tools.

The dataset underwent NLP pre-processing before applying

sentiment analysis using VADER, which categorized texts

into positive, negative, and neutral sentiments. To

complement this, Latent Dirichlet Allocation (LDA) was

applied to extract thematic topics, enabling both sentiment

and topical insights into developer discussions on AI-assisted

coding technologies.

The findings show a clear mix of excitement and challenges

around multimodal AI tools. As Table 1 illustrates, most

discussions were positive (67%), though nearly a third

reflected frustrations or errors. Looking at specific tools in

Table 2, ChatGPT drew the most attention, while GitHub

Copilot sparked the highest engagement, reflecting both its

usefulness and integration hurdles. Smaller tools like Claude

and CodeWhisperer appeared less often but were received

warmly by their early adopters. The themes in Table 3

reinforce this picture: much of the conversation centered on

IDE integration and troubleshooting, showing that

developers are keen to adopt these tools but often turn to the

community when technical obstacles arise.

Table 1: Sentiment classification of Stack Overflow posts
Sentiment Count Percentage Average Score

Positive 2,210 67.0% 0.48

Negative 988 30.0% –0.33

Neutral 99 3.0% 0.00

Total 3,297 100% 0.314 (avg.)

Table 2: AI Tool Popularity
Tool Questions Avg.

Score

Avg.

Views

Avg.

Sentiment

Positive

Sentiment

ChatGPT 574 0.36 763 0.320 67.6%

GitHub Copilot 184 1.62 1,488 0.167 57.6%

Claude 17 0.59 657 0.418 76.5%

Tabnine 4 -0.50 359 0.418 50.0%

Amazon

CodeWhisperer

1 0.00 1,076 0.492 100.0%

Figma to Code 1 -1.00 167 0.881 100.0%

Table 3: Top terms across identified themes
Theme Top Terms (Keywords) Interpretation

1 vscode, code, file, using IDE and file handling issues

2 self, torch, def, model Machine learning implementation

3 import, openai, error OpenAI API usage errors

4 gt, lt, parsing, quot Code formatting/markup issues

5 code, vs, using, error Code execution problems

6 studio, vs, code, project Visual Studio integration

7 intellij, java, idea, project IntelliJ/Java development

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

96

8 keras, model, import, np Deep learning frameworks

4. Discussion

Our analysis shows that developer engagement with

multimodal AI tools on Stack Overflow has been dynamic

rather than static. The sharp peak in November 2024, with

530 questions posted, signals heightened community

attention likely triggered by new feature releases, updates, or

the rising visibility of AI-assisted coding tools. During this

period, ChatGPT and GitHub Copilot dominated discussions,

with developers frequently raising practical issues around

API integration, error handling, and file exclusions in IDEs.

The +204.7% growth rate in the final three months compared

to the first three months highlights the accelerating adoption

of these tools. Developers are not only experimenting with

multimodal AI but also relying heavily on peer knowledge to

overcome technical challenges, with Stack Overflow serving

as a key hub for sharing solutions and workarounds.

Sentiment patterns add nuance to this trend, as February 2024

is the most positive month (average sentiment 0.429), and this

reflected early enthusiasm around tools such as ChatGPT and

Claude, with posts often emphasizing novelty and

productivity gains. In contrast, GitHub Copilot, while widely

adopted and attracting the highest average engagement

(1,488 views per question), elicited more balanced sentiment.

Furthermore, developers valued its practical benefits but also

voiced recurring concerns about blocked completions and

integration errors. Smaller tools such as Figma to Code and

Amazon CodeWhisperer appeared far less frequently but

were consistently associated with positive impressions,

suggesting that even niche tools can generate strong approval

among early adopters.

The trajectory of these discussions illustrates a shift from

initial optimism and curiosity toward more practical,

experience-based evaluations and ChatGPT remains

dominant by volume, reflecting its versatility, while Copilot

draws the most focused engagement, underscoring both its

utility and the integration challenges it presents. Developer

questions further reveal strong expectations for seamless

integration of AI into modern frameworks and IDEs, with

tools like Next.js AI SDK and Copilot seen as central to

evolving workflows. Nevertheless, concerns around trust,

control, and precision persist, particularly when AI interacts

with sensitive files or introduces unexpected behaviors.

These discussions suggest that multimodal AI is welcomed as

a productivity-enhancing innovation, but its sustained

adoption will depend on its ability to become reliable,

context-aware, and aligned with developer needs.

5. Conclusion

The findings of this study highlight the dual nature of

multimodal AI adoption in software development and

developers express strong enthusiasm for tools such as

ChatGPT, GitHub Copilot, and emerging multimodal

frameworks, which are seen as catalysts for productivity and

innovation. However, community discussions reveal

persistent concerns about trust, integration challenges,

intellectual property rights, and security risks. Sentiment

analysis shows that while two-thirds of discussions are

positive, critical voices are growing as real-world usage

exposes technical limitations and ethical dilemmas.

Looking ahead to 2030, multimodal AI is expected to drive

major transformations in UI/UX automation, multimodal

debugging, autonomous DevOps, and AI-native software

engineering, potentially evolving toward systems that act as

autonomous collaborators and full-stack developers. Yet the

success of this transition depends on how well both

developers and organizations prepare. For developers, this

means building skills in prompt engineering, AI- assisted

debugging, and high-level design thinking, while allowing AI

to handle boilerplate and repetitive code. For companies,

preparation involves implementing AI-aware code review

policies, investing in workforce upskilling, and establishing

compliance frameworks to address security, bias, and

licensing concerns. Ultimately, multimodal AI will not

replace human developers but reshape the nature of their

work. By aligning adoption with ethical safeguards and

practical readiness, the software industry can harness the

promise of multimodal AI to create more efficient, reliable,

and collaborative development ecosystems.

References

[1] Ait Said, M., & Marzouk, A. (2024). Microservice

Architecture DevOps Integration Challenges: A

Qualitative Study. Recent Trends and Advances in

Artificial Intelligence: Selected Papers from

ICAETA-2024, 1138, 96.

[2] Akhtar, Z. B. (2024). Unveiling the evolution of

generative AI (GAI): a comprehensive and

investigative analysis toward LLM models (2021–

2024) and beyond. Journal of Electrical Systems and

Information Technology, 11(1), 22.

[3] Al Haque, E., Brown, C., LaToza, T. D., & Johnson,

B. (2025, June). The Evolution of Information

Seeking in Software Development: Understanding

the Role and Impact of AI

[4] Assistants. In Proceedings of the 33rd ACM

International Conference on the Foundations of

Software Engineering (pp. 1494-1502).

[5] Amazon Web Services. (2024). Amazon Q

Developer enterprise features. AWS

Documentation.

https://docs.aws.amazon.com/amazonq/

[6] Amazon Web Services. (2024). Amazon Q

Developer: Enhanced multimodal capabilities and

regional expansion. AWS Blog.

https://aws.amazon.com/blogs/developer/

[7] Anima. (2024). Figma to React: Generate

developer-friendly code from your designs.

https://www.animaapp.com

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

97

[8] Berardinelli, L., Muttillo, V., Eramo, R., Bruneliere,

H., Rahimi, A., Cicchetti, A., ... & Saadatmand, M.

(2025). Model Driven Engineering, Artificial

Intelligence, and DevOps for Software and Systems

Engineering: A Systematic Mapping Study of

Synergies and Challenges. ACM Transactions on

Software Engineering and Methodology.

[9] BT Group, (2024). BT Group advances AI-

enhanced product development with Amazon

CodeWhisperer. Enterprise AI Report, 12(4), 45–52.

[10] Bubeck, A., et al. (2023). Sparks of artificial general

intelligence: Early experiments with GPT-4. arXiv

preprint arXiv:2303.12712.

[11] Çiçek, S., Aksu, M. S., Öztürk, E., Bingöl, K.,

Mersin, G., Koç, M., ... & Başarır, L. Architectural

Critique with Artificial Intelligence: Generating

Architectural Reviews through Vision-Language

Models. Journal of Computational Design, 6(1),

165-190.

[12] Dave, H., Sonje, S., Pardeshi, J., Chaudhari, S., &

Raundale, P. (2021, March). A survey on Artificial

Intelligence based techniques to convert User

Interface design mock-ups to code. In 2021

International Conference on Artificial Intelligence

and Smart Systems (ICAIS) (pp. 28- 33). IEEE.

[13] Durgam, D., Anandhan, N., & Pathak, R. (2025). AI

Image Generation: Emerging Trends and Its Impact

on UI/UX Design. IJSAT-International Journal on

Science and Technology, 16(2).

[14] Ehlinger, E. G., & Stephany, F. (2023). SKILLS OR

A DEGREE?: THE RISE OF SKILL- BASED

HIRING FOR AI AND GREEN JOBS. Bruegel.

[15] Eindhoven University of Technology. (2025). AI in

software engineering: Challenges in developer

toolchains. Eindhoven Research Portal.

[16] Espinha Gasiba, T., Iosif, A. C., Kessba, I., Amburi,

S., Lechner, U., & Pinto-Albuquerque, (2024). May

the source be with you: On chatgpt, cybersecurity,

and secure coding. Information, 15(9), 572.

[17] Fatima, S., Hemmati, H., & Briand, L. (2024).

FlakyFix: Using large language models for

predicting flaky test fix categories and test code

repair. IEEE Transactions on Software Engineering.

[18] George, T. T., & Harendra, R. K. (2024). Enhanced

model-driven web application development with

code generation using deep learning technique.

Intelligent Decision Technologies, 18(1), 75-90.

[19] GitHub. (2024, November). GitHub Copilot gains

multi-model support. GitHub Universe 2024.

https://github.blog

[20] Görer, B., & Aydemir, F. B. (2024, June). GPT-

powered elicitation interview script generator for

requirements engineering training. In 2024 IEEE

32nd International Requirements Engineering

Conference (RE) (pp. 372-379). IEEE.

[21] Grand View Research. (2024). Multimodal AI

market size, share & trends analysis report by

modality (text, speech, image, video), by offering

(hardware, software, services), by end-use, by

region, and segment forecasts, 2024 – 2030.

https://www.grandviewresearch.com/industry-

analysis/multimodal-ai-market

[22] Gu, A., Jain, N., Li, W. D., Shetty, M., Shao, Y., Li,

Z., ... & Solar-Lezama, A. Tasks, Challenges, and

Paths Towards AI for Software Engineering. In

ICLR 2025 Workshop: VerifAI: AI Verification in

the Wild.

[23] Huang, V., Wang, C., Ma, H., Chen, G., &

Christopher, K. (2022, November). Cost-aware

dynamic multi-workflow scheduling in cloud data

center using evolutionary reinforcement learning. In

International Conference on Service-Oriented

Computing (pp. 449-464). Cham: Springer Nature

Switzerland.

[24] Jiang, N., Liu, X., Liu, H., Lim, E. T. K., Tan, C. W.,

& Gu, J. (2023). Beyond AI-powered context-aware

services: the role of human–AI collaboration.

Industrial Management & Data Systems, 123(11),

2771-2802.

[25] Katalon. (2025). Top 7 visual regression testing

tools to improve efficiency.

https://katalon.com/resources-center/blog/visual-

regression-testing-tools

[26] Khan, I., et al. (2025). Kodezi Chronos: A

debugging-first language model for repository-

scale code understanding. arXiv preprint

arXiv:2507.12482.

https://arxiv.org/abs/2507.12482

[27] Khan, J. Y., & Uddin, G. (2022, October). Automatic

code documentation generation using gpt-3. In

Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering

(pp. 1-6).

[28] Kinder, M., de Souza Briggs, X., Liu, S., & Muro,

M. (2024). Generative AI, the American worker, and

the future of work.

[29] Lalanda, P., & Roig, N. A. (2025). Ethical and Legal

Challenges of Artificial Intelligence with Respect to

Intellectual Property. In The AI Revolution: How

Technological Developments Affect the

Audiovisual Sector (pp. 63-80). Cham: Springer

Nature Switzerland.

[30] Le, V.-H., & Zhang, H. (2023, September). Log

parsing: How far can ChatGPT go? In Proceedings

of ASE 2023, NIER Track.

https://arxiv.org/abs/2306.01590

[31] Li, D., Shao, R., Xie, A., Sheng, Y., Zheng, L.,

Gonzalez, J., ... & Zhang, H. (2023). How long can

context length of open-source llms truly promise?.

In NeurIPS 2023 Workshop on Instruction Tuning

and Instruction Following.

[32] Lin, Z., Ma, W., Lin, T., Zheng, Y., Ge, J., Wang, J.,

... & Li, L. (2025). Open Source AI- based SE Tools:

Opportunities and Challenges of Collaborative

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

98

Software Learning. ACM Transactions on Software

Engineering and Methodology, 34(5), 1-24.

[33] Lost-Pixel. (2024). Top 9 automated visual testing

tools (2024). Lost-Pixel Blog.

[34] Ma, X., Liu, Y., & Wang, C. (2024, November).

Design and Implementation of Tool Collaboration

Platform for AI Agents. In 2024 4th International

Conference on Electronic Information Engineering

and Computer (EIECT) (pp. 608-613). IEEE.

[35] Madaan, A., Tandon, N., Gupta, P., Hallinan, S.,

Gao, L., Wiegreffe, S., ... & Clark, P. (2023). Self-

refine: Iterative refinement with self-feedback.

Advances in Neural Information Processing

Systems, 36, 46534-46594.

[36] Malek, S., Canavera, K., & Esfahani, N. (2017).

Automated inference techniques to assist with the

construction of self-adaptive software. In Managing

trade-offs in adaptable software architectures (pp.

131-154). Morgan Kaufmann.

[37] Mathews, N. S. (2024). Code Generation and

Testing in the Era of AI-Native Software

Engineering.

[38] Modi, R., Reddy, N., & Kodur, S. S. (2025).

DebugMate: An AI agent for efficient on-call

debugging in complex production systems.

Discover Data, 3, Article 33.

[39] Moustafa, N., Hu, J., & Slay, J. (2019). A holistic

review of network anomaly detection systems: A

comprehensive survey. Journal of Network and

Computer Applications, 128, 33- 55.

[40] Mudgal, P., & Wouhaybi, R. (2023, August). An

assessment of ChatGPT on log data. In International

Conference on AI-generated Content (pp. 148-169).

Singapore: Springer Nature Singapore.

[41] Muhammad, A. (2023). Leveraging Cloud-Driven

Reinforcement Learning for Dynamic Resource

Management in Autonomous Systems.

[42] Neptune.ai. (2025, January). Multimodal Large

Language Models .

https://neptune.ai/blog/multimodal-large-language-

models

[43] Noor, N. (2025). Generative AI-assisted software

development teams: opportunities, challenges, and

best practices.

[44] Oh, S., Lee, K., Park, S., Kim, D., & Kim, H. (2024,

May). Poisoned chatgpt finds work for idle hands:

Exploring developers’ coding practices with

insecure suggestions from poisoned ai models. In

2024 IEEE Symposium on Security and Privacy

(SP) (pp. 1141-1159). IEEE.

[45] OpenAI. (2024, May). Voice-driven code editing

with GPT-4o. OpenAI Blog.

https://openai.com/blog

[46] OWASP Foundation. (2024). AI coding assistants

and secure development guidelines.

https://owasp.org

[47] Pandhare, H. V. (2025). Future of Software Test

Automation Using AI/ML. International Journal Of

Engineering And Computer Science, 13(05).

[48] Patel, P. K. K. (2025). Exploring Student

Developers’ Perspectives on AI-Powered

Development Assistants for Web Accessibility:

Trust, Adoption, and Usage Patterns (Doctoral

dissertation, Carleton University).

[49] Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., &

Karri, R. (2025). Asleep at the keyboard? assessing

the security of GitHub copilot’s code contributions.

Communications of the ACM, 68(2), 96-105..

[50] Perumallaplli, R. (2021). PREDICTIVE

MAINTENANCE IN CLOUD

INFRASTRUCTURE: A MACHINE LEARNING

FRAMEWORK. Available at SSRN 5228213.

[51] Preethi, P., Ragavan, V., Abinandhana, C.,

Umamaheswari, G., & Suvethaa, D. R. (2024,

December). Towards CodeBlizz: Developing an AI-

Driven IDE Plugin for Real-Time Code

Suggestions, Debugging, and Learning Assistance

with Generative AI and Machine Learning Models.

In 2024 International Conference on Emerging

Research in Computational Science (ICERCS) (pp.

1-7). IEEE.

[52] Puvvadi, M., Arava, S. K., Santoria, A., Chennupati,

S. S. P., & Puvvadi, H. V. (2025, March). Coding

agents: A comprehensive survey of automated bug

fixing systems and benchmarks. In 2025 IEEE 14th

International Conference on Communication

Systems and Network Technologies (CSNT) (pp.

680-686). IEEE.

[53] Ragel, R. K. C., & Balahadia, F. F. (2023,

November). Visual Test Framework: Enhancing

Software Test Automation with Visual Artificial

Intelligence and Behavioral Driven Development.

In 2023 IEEE 15th International Conference on

Humanoid, Nanotechnology, Information

Technology, Communication and Control,

Environment, and Management (HNICEM) (pp. 1-

5). IEEE.

[54] Ramachandran, R. (2025, March). Transforming

Software Architecture Design With Intelligent

Assistants-A Comparative Analysis. In

SoutheastCon 2025 (pp. 1446-1454). IEEE.

[55] Replit. (2025, June). Agent v2: Autonomous full-

stack software generation from natural language.

Wikipedia. https://en.wikipedia.org/wiki/Replit

[56] Ross, S. I., Martinez, F., Houde, S., Muller, M., &

Weisz, J. D. (2023, March). The programmer’s

assistant: Conversational interaction with a large

language model for software development. In

Proceedings of the 28th International Conference on

Intelligent User Interfaces (pp. 491-514).

[57] Saarathy, S. C. P., Bathrachalam, S., & Rajendran,

B. K. (2024). Self-Healing Test Automation

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

99

Framework using AI and ML. International Journal

of Strategic Management, 3(3), 45-77.

[58] Salvi, G. (2023). Web UI code generation: a

transformer-based model applied to real-world

screenshots (Doctoral dissertation, Politecnico di

Torino).

[59] Si, C., Zhang, Y., Li, R., Yang, Z., Liu, R., & Yang,

D. Design2Code: Benchmarking multimodal code

generation for automated front-end engineering. In

Proceedings of the 2025 Conference of the Nations

of the Americas Chapter of the Association for

Computational Linguistics: Human Language

Technologies (Vol. 1, pp. 3956-3974).

[60] Singh, C., & Sudha, K. (2024). Breaking Down

Barriers: A Survey of Screenshot-to-Code

Translation Tools and Strategies. Available at SSRN

4935453.

[61] Stack Overflow Developer Survey. (2024).

Developer AI tool adoption survey 2024.

https://survey.stackoverflow.co/2024/

[62] Stack Overflow. (2024). 2025 Developer Survey. AI

| 2025 Stack Overflow Developer Survey.

https://survey.stackoverflow.co/2025/ai

[63] Stalnaker, T., Wintersgill, N., Chaparro, O.,

Heymann, L. A., Di Penta, M., German, D. M., &

Poshyvanyk, D. (2024). Developer Perspectives on

Licensing and Copyright Issues Arising from

Generative AI for Software Development. ACM

Transactions on Software Engineering and

Methodology.

[64] TechRadar Pro. (2025, July 24). The three

generations of AI coding tools, and what to expect

through the rest of 2025.

[65] Tuli, A. M., Tuli, S., Tuli, R., & Gill, S. (2020). Next

generation technologies for smart infrastructure:

Challenges, vision, model, trends and future

directions. IEEE Access, 8, 108– 120.

[66] Vaithilingam, P., Zhang, T., & Glassman, E. L.

(2022, April). Expectation vs. experience:

Evaluating the usability of code generation tools

powered by large language models. In Chi

conference on human factors in computing systems

extended abstracts (pp. 1-7).

[67] Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., &

Filkov, V. (2015, August). Quality and productivity

outcomes relating to continuous integration in

GitHub. In Proceedings of the 2015 10th joint

meeting on foundations of software engineering (pp.

805-816).

[68] Wan, Y., Wang, C., Dong, Y., Wang, W., Li, S., Huo,

Y., & Lyu, M. (2025). Divide-and- Conquer:

Generating UI Code from Screenshots. Proceedings

of the ACM on Software Engineering, 2(FSE),

2099-2122.

[69] Wei, J., Tan, C., Chen, Q., Wu, G., Li, S., Gao, Z., ...

& Guo, R. (2025). From Words to Structured

Visuals: A Benchmark and Framework for Text-to-

Diagram Generation and Editing. In Proceedings of

the Computer Vision and Pattern Recognition

Conference (pp. 13315-13325).

[70] Xu, W., Gao, K., He, H., & Zhou, M. (2024).

LiCoEval: Evaluating LLMs on license compliance

in code generation. arXiv preprint

arXiv:2408.02487.

[71] Yue, S. (2024). A multimodal conceptual framework

to achieve automated software evolution for

context-rich intelligent applications. Innovations in

Systems and Software Engineering.

[72] Zhai, H., & Wang, J. (2021). Automatic deployment

system of computer program application based on

cloud computing. International Journal of System

Assurance Engineering and Management, 12(4),

731-740.

[73] Zhang, F., Chen, H., Chen, Q., & Liu, J. (2025).

Cloud software code generation via knowledge

graphs and multi-modal learning. Journal of Cloud

Computing, 14(1), 1-19.

