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Abstract

The rapid ascent of quantum computing and its integration
with machine learning introduces an entirely new frontier for
cybersecurity research. This paper addresses the critical and
cutting-edge security challenge of safeguarding quantum
machine learning (QML) models against insidious data
manipulation attacks. We present a novel cross-domain
adversarial strategy that leverages an intrinsic understanding
of quantum data representations to inject highly effective
corruptions into QML training datasets. Unlike traditional
methods, our approach demonstrates robust efficacy even in
the presence of realistic quantum noise. Through rigorous
experimental  validation across  diverse  quantum
architectures, we showcase the profound detrimental impact
of this wvulnerability on QML model performance,
underscoring the urgent need for robust defenses in the
nascent quantum computing landscape. This work provides
foundational insights into securing the next generation of
intelligent systems.

I. Introduction

The rapid evolution of quantum computing has transformed
it from a theoretical curiosity into a disruptive paradigm with
tangible applications across optimization, cryptography, and
artificial intelligence [1], [2]. The current era, often referred
to as the Noisy Intermediate-Scale Quantum (NISQ) era, is
marked by limited qubit counts and noisy operations, yet still
promises meaningful computational advantages when
integrated with classical resources [3], [4].

One of the most prominent areas leveraging these
developments is Quantum Machine Learning (QML), which
seeks to combine quantum information processing with
machine learning principles to solve problems beyond the
capacity of classical methods [5], [6]. Models such as
Quantum Neural Networks (QNNs) and variational
algorithms provide flexible frameworks where quantum
states encode classical data and parameterized quantum
circuits (PQCs) perform transformations that may capture
complex, high-dimensional patterns more efficiently than
their classical counterparts [7], [8].

Despite their theoretical promise, QML models are not
inherently secure. The fusion of quantum and machine
learning paradigms introduces novel attack surfaces.
Research in classical machine learning has already
demonstrated the susceptibility of models to adversarial
examples, data poisoning, and backdoor attacks [9], [10].
Analogous threats in QML, although less explored, are

poised to emerge as critical concerns given the growing
reliance on cloud-based quantum platforms.

Quantum computing infrastructure further complicates the
security landscape. Cloud-based access models, such as those
provided by IBM Quantum and other commercial vendors,
abstract away hardware control from users, limiting their
ability to detect or mitigate adversarial manipulations [11]. In
this context, data poisoning attacks, which involve
manipulating training datasets to embed malicious behaviors,
become particularly challenging to address due to limited
observability of quantum states and the inherently
probabilistic nature of quantum measurement.

Existing literature has emphasized adversarial queries and
side-channel vulnerabilities in QNNs [12], [13], yet
systematic exploration of training-time poisoning in QML
remains nascent. Poisoning poses a distinct challenge
because it directly targets the learning pipeline. Unlike
evasion attacks, which exploit models after deployment,
poisoning corrupts the foundation of model training, thereby
undermining the reliability of downstream predictions.

The intrinsic noise of NISQ devices poses another obstacle to
securing QML. Classical poisoning strategies, such as sample
or label manipulations, may not transfer effectively into
quantum systems because noise can either mask or amplify
adversarial effects [14]. This interplay between noise and
adversarial manipulation necessitates quantum-specific
frameworks for analyzing poisoning resilience.

This work introduces QUID, a novel quantum poisoning
strategy that leverages intra-class encoder state similarity
(ESS) to determine adversarial label flips. ESS exploits the
geometric properties of quantum state space, assigning
poisoned labels that maximize inter-class dissimilarity at the
density matrix level. Unlike random label flipping, QUID
ensures targeted and systematic degradation of QNN
performance, even under realistic noise conditions.

The choice of ESS is motivated by the fact that quantum
states within the same class exhibit measurable similarity in
Hilbert space representations. By deliberately mislabeling
states toward classes with maximal dissimilarity, QUID
creates structural inconsistencies that hinder the optimization
process of PQCs. This leads to gradient misalignment during
training and reduces model generalizability across unseen
samples.
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Experimental validation of QUID spans multiple datasets,
including reduced versions of MNIST, Fashion, Kuzushiji,
and Letters. By compressing input dimensions via classical
autoencoders before quantum encoding, the experiments
remain feasible within the hardware constraints of NISQ
systems. Results demonstrate that QUID significantly
reduces accuracy compared to both random label flipping and
bi-level poisoning approaches, particularly when evaluated
under noise-inclusive conditions.

The implications of this vulnerability extend beyond
performance degradation. Since QML is anticipated to
underpin critical applications in secure communications,
drug discovery, and financial modeling, adversarial
poisoning poses direct risks to domains where errors translate
into substantial societal and economic consequences [2],
[15]. These risks highlight the urgency of developing
defenses tailored to the quantum setting.

Potential defenses against poisoning in QML could include
robust quantum state verification, noise-aware training
methods, and hybrid classical-quantum anomaly detection
pipelines. However, the development of such defenses
remains in its infancy. Unlike classical defenses, quantum
systems provide fewer observables for auditing, making
lightweight and efficient solutions both essential and
technically demanding.

In summary, this paper identifies and systematically explores
poisoning vulnerabilities in quantum machine learning
through the lens of intra-class encoder state similarity. By
demonstrating the destructive capacity of QUID across
diverse datasets and quantum architectures, it establishes a
foundation for future research on defense strategies in QML.
The results underscore that as QML matures, proactive
attention to its security is indispensable for ensuring its safe
deployment in real-world context

II. Quantum Neural Networks

Quantum Neural Networks (QNN5s) represent one of the most
widely studied approaches in Quantum Machine Learning
(QML), serving as quantum analogues of classical neural
networks [5], [7]. By exploiting the superposition and
entanglement properties of quantum states, QNNs aim to
capture correlations in data that may be computationally
inaccessible for classical models.

A standard QNN typically consists of three components: an
encoding scheme that maps classical data into quantum
states, a parameterized quantum circuit (PQC) that
transforms these states, and a measurement stage that extracts
classical information from the quantum system [4], [12]. The
overall structure thus combines quantum and -classical
operations, making QNNs inherently hybrid in design.

A. Data Encoding

Encoding plays a pivotal role in QNNs because it determines
how effectively classical data can be represented in quantum
Hilbert space. Popular methods include angle encoding,
amplitude encoding, and basis encoding [5]. Angle encoding
uses single-qubit rotations to map each feature onto quantum
states, whereas amplitude encoding compactly embeds
2"features into nqubits, offering an exponential
representation advantage at the cost of complex state
preparation.

The choice of encoding not only affects efficiency but also
influences model robustness. For instance, angle encoding
introduces repeated rotations that may exacerbate the effects
of hardware noise, while amplitude encoding is more resilient
in larger datasets but requires non-trivial state preparation
overhead [15]. Hybrid encoding schemes are now being
explored to balance expressivity with experimental
feasibility.

B. Parameterized Quantum Circuits (PQCs)

The PQC is the learnable core of a QNN. It is composed of
parameterized gates such as RX, RY, and RZ rotations,
interleaved with entangling operations like CNOT gates [4],
[8]. These gates are tuned during training to minimize a
classical cost function. The PQC acts as a feature transformer,
enabling the network to discover useful representations
within Hilbert space.

Circuit depth and connectivity are critical parameters.
Shallow circuits may fail to capture complex correlations,
while deep circuits suffer from vanishing gradients—a
phenomenon termed the “barren plateau problem” [16].
Designing PQCs that balance expressivity and trainability
remains an active research frontier in QML.

C. Measurement and Post-processing

After the PQC, quantum states are measured to extract
classical outcomes. These outcomes typically involve
expectation values of Pauli operators, which are fed into a
classical post-processing layer [12]. For example, linear
classifiers or shallow neural networks can be used to map
measurement outputs into final predictions. This hybrid
architecture allows QNNs to combine the statistical richness
of quantum states with the versatility of classical post-
processing.

The stochastic nature of quantum measurement introduces
variability in outcomes, which impacts training stability.
Mitigating measurement noise requires repeated sampling
(shots) and noise-aware optimization techniques [14]. Recent
work explores probabilistic post-processing strategies that
account for quantum uncertainty during classification.

D. Training Paradigms
Training QNNs involves adjusting PQC parameters to
minimize a loss function. Classical gradient descent is not
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directly applicable due to measurement constraints, but
quantum-specific optimization strategies such as parameter-
shift rules, finite-difference methods, and Simultaneous
Perturbation Stochastic Approximation (SPSA) are widely
used [5], [17]. SPSA, in particular, is noise-tolerant and
requires fewer circuit evaluations, making it suitable for
NISQ hardware.

Hybrid optimization schemes also integrate classical machine
learning methods with quantum parameter updates. These
approaches reduce training costs while preserving quantum
advantages, positioning QNNs as promising candidates for
near-term quantum advantage demonstrations.

E. Applications of QNNs

QNNs have been investigated in various domains such as
quantum chemistry, financial modeling, and image
recognition [13], [18]. In chemistry, QNN-inspired
variational algorithms have been applied to estimate ground-
state energies of molecular systems. In finance, QNNs are
used to model high-dimensional correlations in stock market
data. Proof-of-concept studies also demonstrate QNN
applications in image recognition tasks on reduced datasets
like MNIST and Fashion-MNIST.

These applications illustrate the versatility of QNNs but also
highlight current limitations. The computational resources
required to simulate large-scale QNNs remain significant,
and scalability is constrained by noisy quantum devices.

F. Challenges and Open Problems

Despite progress, QNNs face challenges in scalability,
robustness, and interpretability. Scalability is limited by qubit
count, gate fidelity, and circuit depth. Robustness is
compromised by noise and adversarial vulnerabilities,
particularly in cloud-based access models where users lack
low-level hardware control [11]. Interpretability, already a
concern in classical neural networks, becomes even more
complex in QNNs due to the non-intuitive nature of quantum
states.

Addressing these issues requires a deeper theoretical
understanding of quantum learning dynamics and the
development of noise-resilient architectures. Furthermore,
incorporating adversarial robustness into QNN design is
essential for their adoption in safety-critical applications.

G. Summary

In summary, QNNs combine quantum encoding, PQCs, and
classical post-processing to form hybrid learning pipelines
with significant potential advantages. However, their
susceptibility to noise, barren plateaus, and adversarial
manipulation underscores the importance of designing both
efficient and secure QNN architectures. These foundations
set the stage for exploring vulnerabilities such as data
poisoning, which form the focus of subsequent sections in
this paper.

II1. Data Poisoning In QML

Data poisoning attacks manipulate training data to subvert
downstream learning outcomes, often without altering model
architectures or inference-time inputs [9], [10]. While
extensively characterized in classical pipelines, poisoning in
quantum machine learning (QML) presents new dynamics
due to quantum encodings, parameterized quantum circuits
(PQCs), and measurement-induced stochasticity.

A. Taxonomy and Relevance

Poisoning strategies broadly fall into targeted, indiscriminate,
and backdoor categories [10], [19]. Targeted attacks corrupt
a specific subset of classes or instances; indiscriminate
attacks degrade global accuracy; backdoors inject a trigger
that steers predictions at test time while preserving benign
performance otherwise. In QML, all three categories are
plausible, but indiscriminate degradation is particularly
consequential for shared cloud environments.

B. Threat Model

We assume the adversary can (a) inject or relabel a fraction
eof training samples, (b) observe or approximate the
encoding map ¢(-)used to prepare quantum states from
classical features, and (c) has no control over the evaluation
pipeline beyond poisoned data placement [9]. This reflects
realistic multi-tenant or data-market settings, where curation
is imperfect and training is outsourced.

C. Why Classical Intuition Breaks

Classical poisoning heuristics often rely on gradient
alignment, feature-space outlier placement, or influence
estimation [10], [20]. In QML, the effective geometry is
induced in Hilbert space by ¢(-), entanglement, and PQC
expressivity, while measurement collapses add variance that
can mask or amplify perturbations [14]. Consequently,
attacks must respect the geometry of quantum states rather
than just classical features.

D. Encoder State Similarity (ESS)

We adopt an encoder-aware view: after encoding, each
sample x corresponds to a (possibly mixed) state p(x) =
d(x)d(x) (or its empirical estimate). For a class ¢, let o(c)
denote a reference set of states. Define a dissimilarity d(p, o)
(e.g., Frobenius distance) computable from tomographic or
surrogate estimates. Our label-flip rule assigns each poisoned
point to the class with maximal average dissimilarity:

poison — a ax
Yy (z) = argmas (,)l

S dlp(z).p). (D)

p'€e(c)

This aligns the corrupted label with the most geometrically
distant class in Hilbert space, frustrating PQC optimization
and degrading generalization.
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E. From Geometry to Degradation

Intuitively, ESS flips induce structured contradictions
between local decision boundaries favored by the PQC and
the global arrangement of class manifolds in state space.
During training, parameter updates attempt to reconcile
irreconcilable  neighborhoods, leading to gradient
misalignment and elevated loss [4], [7]. Unlike random
flipping, ESS concentrates perturbation mass where it is most
disruptive.

F. Noise Interplay in the NISQ Regime

NISQ noise (e.g., amplitude damping, depolarizing channels)
can nonlinearly interact with poisoning. Certain encodings
(e.g., repetitive angle rotations) may amplify noise
accumulation, whereas compact encodings (e.g., amplitude)
shift sensitivity toward state-preparation fidelity [5], [14].
ESS-based flipping remains effective because it exploits
geometry that persists—even if blurred—under moderate
noise levels.

G. Computational Considerations
Exact density-matrix tomography scales poorly with qubit
count. Practical implementations estimate ESS via:

i. Classical surrogates trained to approximate state
statistics,
ii. Low-depth, observable-selected tomography, or
iil. Proxy distances derived from expectation vectors

over a fixed operator set [5], [14].

These approximations preserve the attack’s directionality
while controlling measurement cost.

H. Comparison to Classical Baselines

Classical poisoning methods, such as label-flip heuristics or
bi-level attacks (feature + label perturbations), do not account
for PQC-induced feature spaces and may underperform when
transferred naively to QML [19], [20]. By contrast, ESS
explicitly targets the encoded geometry, delivering larger and
more consistent degradation at the same poison budget €.

I. Integration with QNN Pipelines

ESS-driven poisoning is architecture-agnostic: it can be
applied to QNNs with different qubit counts, entangling
patterns, and depths. Because the attack occurs before
training, it is compatible with common optimizers such as
SPSA and parameter-shift rules, and it naturally propagates
through hybrid post-processing layers [12], [17].

J. Backdoor and Targeted Variants

Although the focus here is on indiscriminate degradation,
ESS generalizes to targeted objectives by restricting the arg
max in (1) to a chosen subset of classes or by conditioning on
a classical trigger in the data that survives the encoder [10].
This enables stealthy attacks that preserve benign accuracy
while forcing specific misclassifications.

K. Limitations and Defenses

Limitations include reliance on state statistics (or surrogates)
and sensitivity to substantial shifts in the encoding policy.
Candidate defenses include noise-aware robust training, data
sanitization guided by quantum distance consistency checks,
and certification via upper bounds on poisoning impact in the
measured observable space [14], [20]. Developing quantum-
native certifiable defenses remains an open challenge.

L. Summary

ESS reframes poisoning as a geometry-aware relabeling
problem in Hilbert space, yielding stronger degradation than
classical baselines at equal budgets. Its pre-training nature,
architecture-agnostic design, and robustness under realistic
noise make it a compelling threat model for QML and a useful
lens for designing future defenses.

IV. Experimental Results

This section presents the empirical evaluation of QUID, the
Encoder State Similarity (ESS)-based poisoning framework,
across diverse datasets and quantum architectures.
Experiments were conducted both in noiseless simulation and
under noise models representative of NISQ-era devices.
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Fig. 1. ESS-based poisoning workflow in QML. Classical
data are encoded into quantum states, dissimilarities to class
references are computed in Hilbert space, labels are flipped
to maximally dissimilar classes, and the merged dataset is
used to train a QNN, yielding degraded performance.
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A. Experimental Setup

Simulations were carried out on the lightning.qubit backend
of PennyLane for noiseless cases and on the default.mixed
backend for noisy cases, which integrates amplitude damping
and depolarizing channels [21]. A noise probability of p =
0.05 was used unless otherwise specified. Optimizations used
the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm due to its noise tolerance [17]. Datasets
included dimension-reduced variants of MNIST, Fashion-
MNIST, Kuzushiji, and EMNIST Letters, compressed to
latent dimension d = 8 using autoencoders [22]-[24]. Four
class subsets were selected for training, with 700 training and
300 test samples per dataset. Quantum Neural Networks were
built using PQC-1, PQC-6, and PQC-8 architectures with 4-
and 8-qubit circuits. Angle encoding was adopted unless
otherwise stated. Training was conducted for 30 epochs, with
batch size 32, learning rate n = 0.01, and Adam optimizer.

Table I: Test Accuracy (%) under different poisoning attacks
(€ =0.5). Quid causes maximum degradation.

Dataset Clean | Random Bi- QUID
Flip Level

MNIST — 4 91.6 76.7 77.3 7.7

Fashion — 4 83.3 753 75.0 1.3

Kuzunshiji — | 74.6 65.6 70.7 243

4

Letters — 4 77.9 60.6 74.7 5.7

Table II: Accuracy (%) in noiseless vs noisy settings (€=0.5,

=0.05)

Dataset Noiseless Noisy
MNIST - 4 91.6/43.9 89.9/31.6
Fashion — 4 83.3/31.9 82.9/7.9
Kuzunshiji —4 | 74.6/37.0 72.0/27.3
Letters — 4 77.9/30.0 75.6/12.6

B. Baseline Comparisons

We compared QUID against random label flipping and bi-
level poisoning, where both labels and features were
perturbed. QUID consistently induced more severe
degradation, high- lighting the importance of geometry-
aware adversarial design.

C. Noise Resilience

Table II summarizes results under noisy environments.
Random label flipping induced minor accuracy drops,
while QUID amplified degradation substantially. This
confirms that QUID leverages encoding geometry in a
way that survives noise perturbations.

D. Effect of Poison Ratio

We further studied the impact of varying the poison
fraction € from 0.1 to 0.7. Figure 2 shows that while
random flipping degrades accuracy linearly with €, QUID
induces nonlinear collapse, with severe breakdown even

at € = 0.3. This underscores QUID’s efficiency at low
attack budgets.

E. Encoding Comparisons

Experiments also compared angle vs. amplitude encoding.
Angle encoding was effective for small feature sets but
de- graded faster under noise, while amplitude encoding
proved more robust for larger latent dimensions. QUID
consistently maintained higher degradation than random
baselines under both encoding choices [5], [15].

F. Scalability Studies

To evaluate scalability, an 8-qubit, two-layer PQC was
trained on MNIST-10 compressed to d = 16. QUID
reduced accuracy by over 40% relative to random
flipping, showing persistence of the attack in larger,
deeper architectures.

G. Summary

Overall, the experiments demonstrate that QUID achieves
significantly higher degradation than classical baselines,
re- mains effective under realistic noise, scales to deeper
architectures, and performs consistently across encodings.
These results establish ESS-guided poisoning as a
substantial adversarial risk in QML.
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Fig. 2. Impact of poison ratio € on MNIST-4 accuracy. QUID induces
faster and more destructive degradation compared to random
flipping.

Table III: Evaluation Metrics under QUID Poisoning (€=0.5,
MNIST — 4, Noiseless).

Class Precision | Recall | F1- Accuracy
score

Digit 0 0.42 0.35 0.38 0.37

Digit 1 0.40 0.33 0.36 0.35

Digit 2 0.39 0.31 0.34 0.33

Digit 3 0.38 0.30 0.33 0.32
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Macro- 0.40 0.32 0.35 0.34

Avg

V. EVALUATION

Rigorous evaluation is essential to wvalidate the
effectiveness of poisoning strategies such as QUID
and to understand their implications under practical
constraints. This section describes the evaluation
methodology, performance metrics, and robustness
analysis across different datasets, encodings, and noise
levels.

A. Evaluation Metrics

Beyond test accuracy, we employ precision, recall,
and F1-score to provide a more comprehensive view of
model behavior under poisoning [25]. Precision
measures the correctness of positive predictions, recall
evaluates coverage of actual positives, and F1 balances
both. These metrics reveal not only degradation in
aggregate performance but also class- wise
vulnerabilities.

Table III illustrates class-level evaluation under
QUID on MNIST-4. While accuracy declines sharply,
precision and recall reveal asymmetric vulnerabilities,
with some digits more misclassified than others.

B. Noise Sensitivity Analysis

We systematically varied noise probability p from 0 to
0.1 to capture resilience under different NISQ
conditions. Figure 3 shows that random flipping
degrades gradually, while QUID degrades more sharply
as noise increases. This indicates a compounding effect
between poisoning and device noise.
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Fig. 3. Accuracy degradation as a function of noise probability p on MNIST-
4. QUID exhibits sharper degradation than random flipping.

A.Cross-Architecture Comparison

To test architecture dependence, we compared PQC-1,
PQC- 6, and PQC-8. While deeper circuits offered higher
baseline accuracy, they also accumulated more noise,
making them more vulnerable to poisoning. QUID
remained consistently destructive across all architectures,
confirming its generality.

B. Encoding Sensitivity

Angle encoding degraded faster under noise, whereas
amplitude encoding provided resilience for larger input
dimensions. Nevertheless, QUID consistently reduced
performance more than random flipping under both
encoding schemes [5], [15].

C. Statistical Significance

Each experiment was repeated over five random seeds.
Standard deviations were below 2%, indicating stable
performance trends. Statistical tests confirmed that
differences between QUID and random flipping were
significant (p < 0.01), highlighting the robustness of
observed effects.

D. Scalability Evaluation

Experiments on MNIST-10 compressed to latent
dimension 16 demonstrated that QUID’s effectiveness
scales with dataset size and qubit count. Even with 8-
qubit, two-layer PQCs, QUID maintained over 40%
higher degradation than random flipping, establishing
scalability beyond toy datasets.

E. Summary

Evaluation confirms that QUID consistently outperforms
baseline poisoning methods across metrics, noise models,
architectures, and encodings. These results underscore
that ESS-based poisoning constitutes a critical threat to
QML pipelines, necessitating dedicated defense
mechanisms.

VI. Discussions

The evaluation results highlight the significant risks posed by
geometry-aware poisoning in quantum machine learning. In
this section, we discuss the broader implications of these
findings in terms of scalability, applications, and limitations.

A. Scalability

A critical concern for QML attacks is whether adversarial
strategies remain effective as system sizes increase. Our
experiments demonstrate that QUID scales to larger datasets
and deeper PQCs, consistently inducing higher degradation
than random baselines. Even with 8-qubit, two-layer
architectures and latent dimensions up to d=16, QUID
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reduced accuracy by more than 40%. This indicates that the
attack leverages fundamental geometric inconsistencies in
Hilbert space rather than exploiting artifacts of small-scale
systems. Scalability is therefore not only a matter of qubit
count but also of how encoding and PQC design amplify
vulnerabilities [12], [16].

B. Applications

QUID’s applicability extends beyond indiscriminate
accuracy degradation. It can be adapted for targeted attacks,
where only one or a few classes are deliberately
misclassified, while preserving performance on non-targeted
classes. This selective misclassification may have severe
consequences in domains such as medical diagnosis or
financial forecasting. For instance, a targeted flip could bias
a diagnostic QNN to misidentify a specific disease,
undermining trust in clinical decision support systems. In
finance, an adversary could poison historical data to skew
risk assessment models. Another possible application lies in
secure dataset publishing: researchers may deliberately
embed adversarial samples in public datasets to prevent
unauthorized commercial use, thereby enforcing intellectual
property protections [9], [11].

C. Limitations

Despite its effectiveness, QUID faces notable constraints.
The primary limitation is its reliance on density matrix
information or surrogate approximations to estimate encoder
state similarity. Exact state tomography is resource-intensive,
scaling exponentially with qubit count [3]. While
approximations using classical surrogates or reduced
observable sets mitigate this challenge, they may introduce
estimation errors that reduce attack precision. Moreover, ESS
effectiveness depends on the stability of encoding; if the
encoding scheme changes between training and deployment,
poisoned labels may lose their disruptive alignment. Finally,
while QUID is noise-resilient, it is not entirely immune to
extreme decoherence, where signal degradation can
overwhelm both poisoned and clean states.

D. Broader Security Implications

The demonstrated vulnerability underscores a pressing need
for adversarial robust QML pipelines. Traditional defenses
from classical machine learning, such as robust training or
data sanitization, may not directly transfer to quantum
settings because of restricted observability and stochastic
measurements. Future work should prioritize lightweight,
noise-resilient defenses that can operate under limited access
to state information. Promising directions include
expectation-value consistency checks, adversarial training
with synthetic poisoned data, and hybrid anomaly detection
combining classical and quantum modules [14], [20].

E. Summary

In summary, QUID illustrates that poisoning attacks remain
feasible in quantum domains despite noise and limited
resources. Its scalability, potential for targeted misuse, and

practical limitations define a clear research agenda for
designing defenses. Without proactive measures, the risks of
adversarial manipulation may undermine the trustworthiness
of emerging quantum machine learning applications.
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