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Abstract 

The rapid ascent of quantum computing and its integration 

with machine learning introduces an entirely new frontier for 

cybersecurity research. This paper addresses the critical and 

cutting-edge security challenge of safeguarding quantum 

machine learning (QML) models against insidious data 

manipulation attacks. We present a novel cross-domain 

adversarial strategy that leverages an intrinsic understanding 

of quantum data representations to inject highly effective 

corruptions into QML training datasets. Unlike traditional 

methods, our approach demonstrates robust efficacy even in 

the presence of realistic quantum noise. Through rigorous 

experimental validation across diverse quantum 

architectures, we showcase the profound detrimental impact 

of this vulnerability on QML model performance, 

underscoring the urgent need for robust defenses in the 

nascent quantum computing landscape. This work provides 

foundational insights into securing the next generation of 

intelligent systems. 

 

I. Introduction 

The rapid evolution of quantum computing has transformed 

it from a theoretical curiosity into a disruptive paradigm with 

tangible applications across optimization, cryptography, and 

artificial intelligence [1], [2]. The current era, often referred 

to as the Noisy Intermediate-Scale Quantum (NISQ) era, is 

marked by limited qubit counts and noisy operations, yet still 

promises meaningful computational advantages when 

integrated with classical resources [3], [4]. 

 

One of the most prominent areas leveraging these 

developments is Quantum Machine Learning (QML), which 

seeks to combine quantum information processing with 

machine learning principles to solve problems beyond the 

capacity of classical methods [5], [6]. Models such as 

Quantum Neural Networks (QNNs) and variational 

algorithms provide flexible frameworks where quantum 

states encode classical data and parameterized quantum 

circuits (PQCs) perform transformations that may capture 

complex, high-dimensional patterns more efficiently than 

their classical counterparts [7], [8]. 

 

Despite their theoretical promise, QML models are not 

inherently secure. The fusion of quantum and machine 

learning paradigms introduces novel attack surfaces. 

Research in classical machine learning has already 

demonstrated the susceptibility of models to adversarial 

examples, data poisoning, and backdoor attacks [9], [10]. 

Analogous threats in QML, although less explored, are 

poised to emerge as critical concerns given the growing 

reliance on cloud-based quantum platforms. 

 

Quantum computing infrastructure further complicates the 

security landscape. Cloud-based access models, such as those 

provided by IBM Quantum and other commercial vendors, 

abstract away hardware control from users, limiting their 

ability to detect or mitigate adversarial manipulations [11]. In 

this context, data poisoning attacks, which involve 

manipulating training datasets to embed malicious behaviors, 

become particularly challenging to address due to limited 

observability of quantum states and the inherently 

probabilistic nature of quantum measurement. 

 

Existing literature has emphasized adversarial queries and 

side-channel vulnerabilities in QNNs [12], [13], yet 

systematic exploration of training-time poisoning in QML 

remains nascent. Poisoning poses a distinct challenge 

because it directly targets the learning pipeline. Unlike 

evasion attacks, which exploit models after deployment, 

poisoning corrupts the foundation of model training, thereby 

undermining the reliability of downstream predictions. 

 

The intrinsic noise of NISQ devices poses another obstacle to 

securing QML. Classical poisoning strategies, such as sample 

or label manipulations, may not transfer effectively into 

quantum systems because noise can either mask or amplify 

adversarial effects [14]. This interplay between noise and 

adversarial manipulation necessitates quantum-specific 

frameworks for analyzing poisoning resilience. 

 

This work introduces QUID, a novel quantum poisoning 

strategy that leverages intra-class encoder state similarity 

(ESS) to determine adversarial label flips. ESS exploits the 

geometric properties of quantum state space, assigning 

poisoned labels that maximize inter-class dissimilarity at the 

density matrix level. Unlike random label flipping, QUID 

ensures targeted and systematic degradation of QNN 

performance, even under realistic noise conditions. 

 

The choice of ESS is motivated by the fact that quantum 

states within the same class exhibit measurable similarity in 

Hilbert space representations. By deliberately mislabeling 

states toward classes with maximal dissimilarity, QUID 

creates structural inconsistencies that hinder the optimization 

process of PQCs. This leads to gradient misalignment during 

training and reduces model generalizability across unseen 

samples. 
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Experimental validation of QUID spans multiple datasets, 

including reduced versions of MNIST, Fashion, Kuzushiji, 

and Letters. By compressing input dimensions via classical 

autoencoders before quantum encoding, the experiments 

remain feasible within the hardware constraints of NISQ 

systems. Results demonstrate that QUID significantly 

reduces accuracy compared to both random label flipping and 

bi-level poisoning approaches, particularly when evaluated 

under noise-inclusive conditions. 

 

The implications of this vulnerability extend beyond 

performance degradation. Since QML is anticipated to 

underpin critical applications in secure communications, 

drug discovery, and financial modeling, adversarial 

poisoning poses direct risks to domains where errors translate 

into substantial societal and economic consequences [2], 

[15]. These risks highlight the urgency of developing 

defenses tailored to the quantum setting. 

 

Potential defenses against poisoning in QML could include 

robust quantum state verification, noise-aware training 

methods, and hybrid classical–quantum anomaly detection 

pipelines. However, the development of such defenses 

remains in its infancy. Unlike classical defenses, quantum 

systems provide fewer observables for auditing, making 

lightweight and efficient solutions both essential and 

technically demanding. 

 

In summary, this paper identifies and systematically explores 

poisoning vulnerabilities in quantum machine learning 

through the lens of intra-class encoder state similarity. By 

demonstrating the destructive capacity of QUID across 

diverse datasets and quantum architectures, it establishes a 

foundation for future research on defense strategies in QML. 

The results underscore that as QML matures, proactive 

attention to its security is indispensable for ensuring its safe 

deployment in real-world context 

 

II. Quantum Neural Networks 

Quantum Neural Networks (QNNs) represent one of the most 

widely studied approaches in Quantum Machine Learning 

(QML), serving as quantum analogues of classical neural 

networks [5], [7]. By exploiting the superposition and 

entanglement properties of quantum states, QNNs aim to 

capture correlations in data that may be computationally 

inaccessible for classical models. 

 

A standard QNN typically consists of three components: an 

encoding scheme that maps classical data into quantum 

states, a parameterized quantum circuit (PQC) that 

transforms these states, and a measurement stage that extracts 

classical information from the quantum system [4], [12]. The 

overall structure thus combines quantum and classical 

operations, making QNNs inherently hybrid in design. 

 

 

A. Data Encoding 

Encoding plays a pivotal role in QNNs because it determines 

how effectively classical data can be represented in quantum 

Hilbert space. Popular methods include angle encoding, 

amplitude encoding, and basis encoding [5]. Angle encoding 

uses single-qubit rotations to map each feature onto quantum 

states, whereas amplitude encoding compactly embeds 

2𝑛features into 𝑛qubits, offering an exponential 

representation advantage at the cost of complex state 

preparation. 

 

The choice of encoding not only affects efficiency but also 

influences model robustness. For instance, angle encoding 

introduces repeated rotations that may exacerbate the effects 

of hardware noise, while amplitude encoding is more resilient 

in larger datasets but requires non-trivial state preparation 

overhead [15]. Hybrid encoding schemes are now being 

explored to balance expressivity with experimental 

feasibility. 

 

B. Parameterized Quantum Circuits (PQCs) 

The PQC is the learnable core of a QNN. It is composed of 

parameterized gates such as RX, RY, and RZ rotations, 

interleaved with entangling operations like CNOT gates [4], 

[8]. These gates are tuned during training to minimize a 

classical cost function. The PQC acts as a feature transformer, 

enabling the network to discover useful representations 

within Hilbert space. 

 

Circuit depth and connectivity are critical parameters. 

Shallow circuits may fail to capture complex correlations, 

while deep circuits suffer from vanishing gradients—a 

phenomenon termed the “barren plateau problem” [16]. 

Designing PQCs that balance expressivity and trainability 

remains an active research frontier in QML. 

 

C. Measurement and Post-processing 

After the PQC, quantum states are measured to extract 

classical outcomes. These outcomes typically involve 

expectation values of Pauli operators, which are fed into a 

classical post-processing layer [12]. For example, linear 

classifiers or shallow neural networks can be used to map 

measurement outputs into final predictions. This hybrid 

architecture allows QNNs to combine the statistical richness 

of quantum states with the versatility of classical post-

processing. 

 

The stochastic nature of quantum measurement introduces 

variability in outcomes, which impacts training stability. 

Mitigating measurement noise requires repeated sampling 

(shots) and noise-aware optimization techniques [14]. Recent 

work explores probabilistic post-processing strategies that 

account for quantum uncertainty during classification. 

 

D. Training Paradigms 

Training QNNs involves adjusting PQC parameters to 

minimize a loss function. Classical gradient descent is not 
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directly applicable due to measurement constraints, but 

quantum-specific optimization strategies such as parameter-

shift rules, finite-difference methods, and Simultaneous 

Perturbation Stochastic Approximation (SPSA) are widely 

used [5], [17]. SPSA, in particular, is noise-tolerant and 

requires fewer circuit evaluations, making it suitable for 

NISQ hardware. 

 

Hybrid optimization schemes also integrate classical machine 

learning methods with quantum parameter updates. These 

approaches reduce training costs while preserving quantum 

advantages, positioning QNNs as promising candidates for 

near-term quantum advantage demonstrations. 

 

E. Applications of QNNs 

QNNs have been investigated in various domains such as 

quantum chemistry, financial modeling, and image 

recognition [13], [18]. In chemistry, QNN-inspired 

variational algorithms have been applied to estimate ground-

state energies of molecular systems. In finance, QNNs are 

used to model high-dimensional correlations in stock market 

data. Proof-of-concept studies also demonstrate QNN 

applications in image recognition tasks on reduced datasets 

like MNIST and Fashion-MNIST. 

 

These applications illustrate the versatility of QNNs but also 

highlight current limitations. The computational resources 

required to simulate large-scale QNNs remain significant, 

and scalability is constrained by noisy quantum devices. 

 

F. Challenges and Open Problems 

Despite progress, QNNs face challenges in scalability, 

robustness, and interpretability. Scalability is limited by qubit 

count, gate fidelity, and circuit depth. Robustness is 

compromised by noise and adversarial vulnerabilities, 

particularly in cloud-based access models where users lack 

low-level hardware control [11]. Interpretability, already a 

concern in classical neural networks, becomes even more 

complex in QNNs due to the non-intuitive nature of quantum 

states. 

 

Addressing these issues requires a deeper theoretical 

understanding of quantum learning dynamics and the 

development of noise-resilient architectures. Furthermore, 

incorporating adversarial robustness into QNN design is 

essential for their adoption in safety-critical applications. 

 

G. Summary 

In summary, QNNs combine quantum encoding, PQCs, and 

classical post-processing to form hybrid learning pipelines 

with significant potential advantages. However, their 

susceptibility to noise, barren plateaus, and adversarial 

manipulation underscores the importance of designing both 

efficient and secure QNN architectures. These foundations 

set the stage for exploring vulnerabilities such as data 

poisoning, which form the focus of subsequent sections in 

this paper. 

III. Data Poisoning In QML 

Data poisoning attacks manipulate training data to subvert 

downstream learning outcomes, often without altering model 

architectures or inference-time inputs [9], [10]. While 

extensively characterized in classical pipelines, poisoning in 

quantum machine learning (QML) presents new dynamics 

due to quantum encodings, parameterized quantum circuits 

(PQCs), and measurement-induced stochasticity. 

 

A. Taxonomy and Relevance 

Poisoning strategies broadly fall into targeted, indiscriminate, 

and backdoor categories [10], [19]. Targeted attacks corrupt 

a specific subset of classes or instances; indiscriminate 

attacks degrade global accuracy; backdoors inject a trigger 

that steers predictions at test time while preserving benign 

performance otherwise. In QML, all three categories are 

plausible, but indiscriminate degradation is particularly 

consequential for shared cloud environments. 

 

B. Threat Model 

We assume the adversary can (a) inject or relabel a fraction 

𝜖of training samples, (b) observe or approximate the 

encoding map 𝜙(⋅)used to prepare quantum states from 

classical features, and (c) has no control over the evaluation 

pipeline beyond poisoned data placement [9]. This reflects 

realistic multi-tenant or data-market settings, where curation 

is imperfect and training is outsourced. 

 

C. Why Classical Intuition Breaks 

Classical poisoning heuristics often rely on gradient 

alignment, feature-space outlier placement, or influence 

estimation [10], [20]. In QML, the effective geometry is 

induced in Hilbert space by 𝜙(⋅), entanglement, and PQC 

expressivity, while measurement collapses add variance that 

can mask or amplify perturbations [14]. Consequently, 

attacks must respect the geometry of quantum states rather 

than just classical features. 

 

D. Encoder State Similarity (ESS)  

We adopt an encoder-aware view: after encoding, each 

sample x corresponds to a (possibly mixed) state ρ(x) = 

ϕ(x)ϕ(x) (or its empirical estimate). For a class c, let ϱ(c) 

denote a reference set of states. Define a dissimilarity d(ρ, σ) 

(e.g., Frobenius distance) computable from tomographic or 

surrogate estimates. Our label-flip rule assigns each poisoned 

point to the class with maximal average dissimilarity: 

 

 
 

This aligns the corrupted label with the most geometrically 

distant class in Hilbert space, frustrating PQC optimization 

and degrading generalization. 
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E. From Geometry to Degradation 

Intuitively, ESS flips induce structured contradictions 

between local decision boundaries favored by the PQC and 

the global arrangement of class manifolds in state space. 

During training, parameter updates attempt to reconcile 

irreconcilable neighborhoods, leading to gradient 

misalignment and elevated loss [4], [7]. Unlike random 

flipping, ESS concentrates perturbation mass where it is most 

disruptive. 

 

F. Noise Interplay in the NISQ Regime 

NISQ noise (e.g., amplitude damping, depolarizing channels) 

can nonlinearly interact with poisoning. Certain encodings 

(e.g., repetitive angle rotations) may amplify noise 

accumulation, whereas compact encodings (e.g., amplitude) 

shift sensitivity toward state-preparation fidelity [5], [14]. 

ESS-based flipping remains effective because it exploits 

geometry that persists—even if blurred—under moderate 

noise levels. 

 

G. Computational Considerations 

Exact density-matrix tomography scales poorly with qubit 

count. Practical implementations estimate ESS via: 

 

i. Classical surrogates trained to approximate state 

statistics, 

ii. Low-depth, observable-selected tomography, or 

iii. Proxy distances derived from expectation vectors 

over a fixed operator set [5], [14]. 

 

These approximations preserve the attack’s directionality 

while controlling measurement cost. 

 

H. Comparison to Classical Baselines 

Classical poisoning methods, such as label-flip heuristics or 

bi-level attacks (feature + label perturbations), do not account 

for PQC-induced feature spaces and may underperform when 

transferred naively to QML [19], [20]. By contrast, ESS 

explicitly targets the encoded geometry, delivering larger and 

more consistent degradation at the same poison budget ϵ. 

 

I. Integration with QNN Pipelines 

ESS-driven poisoning is architecture-agnostic: it can be 

applied to QNNs with different qubit counts, entangling 

patterns, and depths. Because the attack occurs before 

training, it is compatible with common optimizers such as 

SPSA and parameter-shift rules, and it naturally propagates 

through hybrid post-processing layers [12], [17]. 

 

J. Backdoor and Targeted Variants 

Although the focus here is on indiscriminate degradation, 

ESS generalizes to targeted objectives by restricting the arg 

max in (1) to a chosen subset of classes or by conditioning on 

a classical trigger in the data that survives the encoder [10]. 

This enables stealthy attacks that preserve benign accuracy 

while forcing specific misclassifications. 

 

K. Limitations and Defenses 

Limitations include reliance on state statistics (or surrogates) 

and sensitivity to substantial shifts in the encoding policy. 

Candidate defenses include noise-aware robust training, data 

sanitization guided by quantum distance consistency checks, 

and certification via upper bounds on poisoning impact in the 

measured observable space [14], [20]. Developing quantum-

native certifiable defenses remains an open challenge. 

 

L. Summary 

ESS reframes poisoning as a geometry-aware relabeling 

problem in Hilbert space, yielding stronger degradation than 

classical baselines at equal budgets. Its pre-training nature, 

architecture-agnostic design, and robustness under realistic 

noise make it a compelling threat model for QML and a useful 

lens for designing future defenses. 

 

IV. Experimental Results 

This section presents the empirical evaluation of QUID, the 

Encoder State Similarity (ESS)-based poisoning framework, 

across diverse datasets and quantum architectures. 

Experiments were conducted both in noiseless simulation and 

under noise models representative of NISQ-era devices. 

 

 

 
 

Fig. 1. ESS-based poisoning workflow in QML. Classical 

data are encoded into quantum states, dissimilarities to class 

references are computed in Hilbert space, labels are flipped 

to maximally dissimilar classes, and the merged dataset is 

used to train a QNN, yielding degraded performance. 
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A. Experimental Setup  

Simulations were carried out on the lightning.qubit backend 

of PennyLane for noiseless cases and on the default.mixed 

backend for noisy cases, which integrates amplitude damping 

and depolarizing channels [21]. A noise probability of p = 

0.05 was used unless otherwise specified. Optimizations used 

the Simultaneous Perturbation Stochastic Approximation 

(SPSA) algorithm due to its noise tolerance [17]. Datasets 

included dimension-reduced variants of MNIST, Fashion-

MNIST, Kuzushiji, and EMNIST Letters, compressed to 

latent dimension d = 8 using autoencoders [22]–[24]. Four 

class subsets were selected for training, with 700 training and 

300 test samples per dataset. Quantum Neural Networks were 

built using PQC-1, PQC-6, and PQC-8 architectures with 4- 

and 8-qubit circuits. Angle encoding was adopted unless 

otherwise stated. Training was conducted for 30 epochs, with 

batch size 32, learning rate η = 0.01, and Adam optimizer. 

 

Table I: Test Accuracy (%) under different poisoning attacks 

(€ = 0.5). Quid causes maximum degradation.  

Dataset Clean Random 

Flip 

Bi-

Level 

QUID 

MNIST – 4 91.6 76.7 77.3 7.7 

Fashion – 4 83.3 75.3 75.0 1.3 

Kuzunshiji – 

4 

74.6 65.6 70.7 24.3 

Letters – 4 77.9 60.6 74.7 5.7 

 

 

Table II: Accuracy (%) in noiseless vs noisy settings (€=0.5, 

p=0.05) 

Dataset Noiseless Noisy 

MNIST – 4 91.6/43.9 89.9/31.6 

Fashion – 4 83.3/31.9 82.9/7.9 

Kuzunshiji – 4 74.6/37.0 72.0/27.3 

Letters – 4 77.9/30.0 75.6/12.6 

 

B. Baseline Comparisons 

We compared QUID against random label flipping and bi- 

level poisoning, where both labels and features were 

perturbed. QUID consistently induced more severe 

degradation, high- lighting the importance of geometry-

aware adversarial design. 

C. Noise Resilience 

Table II summarizes results under noisy environments. 

Random label flipping induced minor accuracy drops, 

while QUID amplified degradation substantially. This 

confirms that QUID leverages encoding geometry in a 

way that survives noise perturbations. 

D. Effect of Poison Ratio 

We further studied the impact of varying the poison 

fraction ϵ from 0.1 to 0.7. Figure 2 shows that while 
random flipping degrades accuracy linearly with ϵ, QUID 

induces nonlinear collapse, with severe breakdown even 

at ϵ = 0.3. This underscores QUID’s efficiency at low 
attack budgets. 

E. Encoding Comparisons 

Experiments also compared angle vs. amplitude encoding. 

Angle encoding was effective for small feature sets but 

de- graded faster under noise, while amplitude encoding 

proved more robust for larger latent dimensions. QUID 

consistently maintained higher degradation than random 

baselines under both encoding choices [5], [15]. 

 

F. Scalability Studies 

To evaluate scalability, an 8-qubit, two-layer PQC was 

trained on MNIST-10 compressed to d = 16. QUID 

reduced accuracy by over 40% relative to random 

flipping, showing persistence of the attack in larger, 

deeper architectures. 

G. Summary 

Overall, the experiments demonstrate that QUID achieves 

significantly higher degradation than classical baselines, 

re- mains effective under realistic noise, scales to deeper 

architectures, and performs consistently across encodings. 

These results establish ESS-guided poisoning as a 

substantial adversarial risk in QML. 

 

 
 

Fig. 2. Impact of poison ratio ϵ on MNIST-4 accuracy. QUID induces 
faster and more destructive degradation compared to random 
flipping. 

 

Table III: Evaluation Metrics under QUID Poisoning (€=0.5, 

MNIST – 4, Noiseless).  

Class Precision Recall F1-

score 

Accuracy 

Digit 0 0.42 0.35 0.38 0.37 

Digit 1 0.40 0.33 0.36 0.35 

Digit 2 0.39 0.31 0.34 0.33 

Digit 3 0.38 0.30 0.33 0.32 
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Macro-

Avg 

0.40 0.32 0.35 0.34 

 

 

V. EVALUATION 

Rigorous evaluation is essential to validate the 

effectiveness of poisoning strategies such as QUID 

and to understand their implications under practical 

constraints. This section describes the evaluation 

methodology, performance metrics, and robustness 

analysis across different datasets, encodings, and noise 

levels. 

A. Evaluation Metrics 

Beyond test accuracy, we employ precision, recall, 

and F1-score to provide a more comprehensive view of 

model behavior under poisoning [25]. Precision 

measures the correctness of positive predictions, recall 

evaluates coverage of actual positives, and F1 balances 

both. These metrics reveal not only degradation in 

aggregate performance but also class- wise 

vulnerabilities. 

Table III illustrates class-level evaluation under 

QUID on MNIST-4. While accuracy declines sharply, 

precision and recall reveal asymmetric vulnerabilities, 

with some digits more misclassified than others. 

B. Noise Sensitivity Analysis 

We systematically varied noise probability p from 0 to 

0.1 to capture resilience under different NISQ 

conditions. Figure 3 shows that random flipping 

degrades gradually, while QUID degrades more sharply 

as noise increases. This indicates a compounding effect 

between poisoning and device noise. 

 

 
 

 

A. Cross-Architecture Comparison 

To test architecture dependence, we compared PQC-1, 

PQC- 6, and PQC-8. While deeper circuits offered higher 

baseline accuracy, they also accumulated more noise, 

making them more vulnerable to poisoning. QUID 

remained consistently destructive across all architectures, 

confirming its generality. 

 

B. Encoding Sensitivity 

Angle encoding degraded faster under noise, whereas 

amplitude encoding provided resilience for larger input 

dimensions. Nevertheless, QUID consistently reduced 

performance more than random flipping under both 

encoding schemes [5], [15]. 

 

C. Statistical Significance 

Each experiment was repeated over five random seeds. 

Standard deviations were below 2%, indicating stable 

performance trends. Statistical tests confirmed that 

differences between QUID and random flipping were 

significant (p < 0.01), highlighting the robustness of 

observed effects. 

 

D. Scalability Evaluation 

Experiments on MNIST-10 compressed to latent 

dimension 16 demonstrated that QUID’s effectiveness 
scales with dataset size and qubit count. Even with 8-

qubit, two-layer PQCs, QUID maintained over 40% 

higher degradation than random flipping, establishing 
scalability beyond toy datasets. 

 

E. Summary 

Evaluation confirms that QUID consistently outperforms 

baseline poisoning methods across metrics, noise models, 

architectures, and encodings. These results underscore 

that ESS-based poisoning constitutes a critical threat to 

QML pipelines, necessitating dedicated defense 

mechanisms. 

 

VI. Discussions 

The evaluation results highlight the significant risks posed by 

geometry-aware poisoning in quantum machine learning. In 

this section, we discuss the broader implications of these 

findings in terms of scalability, applications, and limitations. 

 

A. Scalability 

A critical concern for QML attacks is whether adversarial 

strategies remain effective as system sizes increase. Our 

experiments demonstrate that QUID scales to larger datasets 

and deeper PQCs, consistently inducing higher degradation 

than random baselines. Even with 8-qubit, two-layer 

architectures and latent dimensions up to d=16, QUID 
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reduced accuracy by more than 40%. This indicates that the 

attack leverages fundamental geometric inconsistencies in 

Hilbert space rather than exploiting artifacts of small-scale 

systems. Scalability is therefore not only a matter of qubit 

count but also of how encoding and PQC design amplify 

vulnerabilities [12], [16]. 

 

B. Applications 

QUID’s applicability extends beyond indiscriminate 

accuracy degradation. It can be adapted for targeted attacks, 

where only one or a few classes are deliberately 

misclassified, while preserving performance on non-targeted 

classes. This selective misclassification may have severe 

consequences in domains such as medical diagnosis or 

financial forecasting. For instance, a targeted flip could bias 

a diagnostic QNN to misidentify a specific disease, 

undermining trust in clinical decision support systems. In 

finance, an adversary could poison historical data to skew 

risk assessment models. Another possible application lies in 

secure dataset publishing: researchers may deliberately 

embed adversarial samples in public datasets to prevent 

unauthorized commercial use, thereby enforcing intellectual 

property protections [9], [11]. 

 

C. Limitations 

Despite its effectiveness, QUID faces notable constraints. 

The primary limitation is its reliance on density matrix 

information or surrogate approximations to estimate encoder 

state similarity. Exact state tomography is resource-intensive, 

scaling exponentially with qubit count [3]. While 

approximations using classical surrogates or reduced 

observable sets mitigate this challenge, they may introduce 

estimation errors that reduce attack precision. Moreover, ESS 

effectiveness depends on the stability of encoding; if the 

encoding scheme changes between training and deployment, 

poisoned labels may lose their disruptive alignment. Finally, 

while QUID is noise-resilient, it is not entirely immune to 

extreme decoherence, where signal degradation can 

overwhelm both poisoned and clean states. 

 

D. Broader Security Implications 

The demonstrated vulnerability underscores a pressing need 

for adversarial robust QML pipelines. Traditional defenses 

from classical machine learning, such as robust training or 

data sanitization, may not directly transfer to quantum 

settings because of restricted observability and stochastic 

measurements. Future work should prioritize lightweight, 

noise-resilient defenses that can operate under limited access 

to state information. Promising directions include 

expectation-value consistency checks, adversarial training 

with synthetic poisoned data, and hybrid anomaly detection 

combining classical and quantum modules [14], [20]. 

 

E. Summary 

In summary, QUID illustrates that poisoning attacks remain 

feasible in quantum domains despite noise and limited 

resources. Its scalability, potential for targeted misuse, and 

practical limitations define a clear research agenda for 

designing defenses. Without proactive measures, the risks of 

adversarial manipulation may undermine the trustworthiness 

of emerging quantum machine learning applications. 
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