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Abstract 

This thesis explores the use of deep learning, specifically 

Convolutional Neural Networks (CNNs), for automated 

pavement crack segmentation in North Cyprus, 

addressing the need for efficient road maintenance. The 

study emphasizes the limitations of manual inspection 

and introduces a CNN-based U-Net architecture, 

developed to automate feature extraction, and enable 

more accurate and efficient crack segmentation. 

Implementing a U- Net model with custom layers to learn 

features without transfer learning forms the core of this 

methodology, utilizing ReLU and sigmoid activation 

functions, binary cross-entropy as the loss function, and 

the Adam optimizer. The model is evaluated using 

metrics including accuracy, precision, recall, F1 score, 

and IoU, achieving over 98% accuracy and 

demonstrating optimal performance with larger image 

sizes (256x256). These results highlight the potential of 

U-Net based crack segmentation systems to significantly 

improve road maintenance and safety. 
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1. Introduction 

 

This research aims to use artificial intelligence to 

improve road maintenance in Northern Cyprus. It 

underscores the poor quality of regional roads, which are 

riddled with cracks, and the manual detection methods 

that are simply inadequate. Instead, it proposes the use of 

Convolutional Neural Networks (CNNs) to detect and 

segment those cracks in an automated manner—an 

approach many researchers have argued is much more 

efficient and accurate than visual inspections. The road 

maintenance "problem" (the amount and the quality of 

surveillance and action necessary to keep a road drivable) 

is a common one, but this research covers a region with 

a specific set of geological and climatic conditions that 

are unusual in comparison to most of the other regions in 

the world where road maintenance is studied. 

 

The road network in Northern Cyprus, especially in 

major urban areas like Nicosia, Kyrenia, and Famagusta, 

has a real tough time due to the huge number of vehicles 

and constrained infrastructure. Mainly built as a two-lane 

road system, the path network is just not able to handle 

the kinds of traffic volumes that exists today. This is 

compounded by the fact that the network has a much 

lower quality compared to international standards, which 

means it does not really have any of the features that 

make a road a safe and reliable means of transportation. 

Among the most notable "missing features" of the road 

network is the absence of anything that resembles a 

proper drainage system. This leads to quite a few water 

accumulation problems that can lead to cracks. Another 

major issue is the lack of safety pathways for pedestrians 

and people riding bikes. 

 

A significant issue affecting the road network in Northern 

Cyprus is the prevalence of extensive cracks, which vary 

in size and visibility. While some are easily noticeable, 

others are more subtle and more difficult to detect, posing 

a hidden risks to road users particularly for international 

students and tourists who are unfamiliar with the region. 

Without timely intervention, these cracks worsen over 

time, leading to severe damage such as potholes, which 

degrade the overall quality of the road. This rapid 

deterioration emphasizes the urgent need for effective 

road management strategies to enhance infrastructure 

and improve road safety. 

 

Maintaining roads is essential for ensuring safety, 

economic performance and environmental sustainability. 

Well-maintained roads help not only prevent accidents 

but also support environmentally friendly transportations 

reducing vehicle operating costs and fuel consumption, 

factors essential for economic growth. Addressing cracks 

and resurfacing roads expands the lifespan of road 

infrastructure, saving on long-term repair costs while 

minimizing environmental impact and lowering vehicle 

emissions. However, road cracks present significant 

challenges. They compromise safety by disrupting traffic 

flow and potentially damaging vehicles. Cracks also 

allow water to seep into the road base, weakening the 

structural integrity. Neglecting small cracks can lead to 

larger, more expensive road repairs, ultimately increasing 

maintenance costs and posing greater risks. 

 

The role of timely crack detection in prolonging road 

life and improving safety. 

Timely crack detection is vital for prolonging the lifespan 

of roads and ensuring the safety of all road users. Roads 
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are subjected to various environmental and load-bearing 

stresses, leading to crack formation caused by factors 

such as temperature fluctuations, water infiltration, and 

continuous traffic. If left unaddressed, small cracks can 

expand and deteriorate further over time, resulting in 

severe damage like potholes and patches. Early detection 

allows for preventive renovation measures, such as 

sealing or filling cracks, which can effectively halt 

further deterioration. 

 

From a safety perspective, timely crack detection 

prevents hazardous conditions that could lead to 

accidents. Visible cracks, specifically those allowed to 

evolve into larger defects, pose significant risks to 

drivers, cyclists, and pedestrians. For vehicles, cracks can 

reduce tire grip, cause vibrations, and lead to loss of 

control. Regular monitoring and early intervention 

mitigate these dangers, ensuring roads remain smooth, 

well-maintained, and safe for all users. 

  

1.1. Problem Statement 

1.1.1. Current Challenges in Manual Road Crack 

Detection 

Manual road crack detection faces significant challenges; 

traditional methods rely on visual inspections conducted 

by personnel, which are prone to delays and 

inconsistencies due to human error and varying levels of 

expertise (Yaun, Shi, & Li, 2024). Moreover, manual 

detection often places inspectors in dangerous situations, 

particularly when working near traffic. These limitations 

underscore the importance of adopting automated and 

reliable detection methods to ensure the timely and 

accurate identification of road cracks, ultimately 

enhancing road safety and maintenance efficiency (Yaun, 

Shi, & Li, 2024). 

 

Emerging methods, such as those leveraging deep 

learning, have demonstrated potential for detecting 

cracks at both sub-pixel and pixel levels. Early studies, 

including those by Wang et al. and Yaun, Shi, and Li, 

have shown promise, but current solutions remain 

limited. Issues such as low contrast, insufficient datasets, 

and inaccurate localization reduce the effectiveness of 

these models (2024). Despite these challenges, 

integrating conventional techniques with AI-based 

methods presents a promising path forward to improve 

the efficiency and accuracy of crack detection. 

 

1.1.2. Research Motivation and Objectives 

The motivation of using deep-learning in road 

maintenance is lies in its potential to provide efficient, 

accurate, and lead to proactive solutions. By analyzing 

extensive road network data, deep learning can detect 

cracks and other issues with far greater precision and 

effectiveness than traditional human inspections. These 

technologies enable both real- time monitoring and 

predictive maintenance; allowing potential problems to 

be identified and addressed before they escalate into 

significant damage, such as potholes. This not only 

extends the lifespan of urban infrastructure but also 

enhances safety by equipping workers with critical 

insights to avoid hazardous situations. In essence, deep 

learning revolutionizes road maintenance management 

by optimizing the handling of critical infrastructure and 

conserving valuable resources. The objective of this 

thesis is to develop a CNN-based system capable of 

accurately segmenting pavement cracks. 

 

1.2. Scope Of Study 

1.2.1. Geographical Focus on North Cyprus 

Northern Cyprus presents an ideal setting for studying 

road crack detection due to its unique geographic and 

climatic conditions. The region faces several 

environmental challenges, including significant 

temperature fluctuations, torrential rains, and coastal 

humidity, all contributing to road degradation. 

Additionally, the rugged terrain and mountain ranges, 

such as the Kyrenia Mountains, further complicate road 

maintenance efforts. Implementing automatic crack 

detection systems in the Northern Cyprus context offers 

the potential to detect cracks promptly and accurately, 

enhancing the safety and efficiency of the road network. 

Moreover, such preventative road maintenance strategies 

can significantly reduce repair costs and extend the 

lifespan of the infrastructure, addressing critical 

challenges faced by the region. 

 

1.2.2. Use of CNN as the Primary Tool for 

Segmentation. 

Convolutional Neural Networks (CNN) have emerged as 

a central algorithm for road crack detection, gaining 

significant attention due to their remarkable accruable 

accuracy and effectiveness in image recognition 

(Elghaish, et al., 2021). Studies have shown that CNN 

models like U-Net can detect cracks with higher accuracy 

under diverse lighting and weather conditions. These 

models are capable of processing large volumes of data 

in short time, making them highly efficient. By 

automating the detection process, CNNs eliminate the 

need for manual inspections, which are inherently 

subjective and labor intensive (Benedetto et al., 2023). 

This automation not only enhances crack detection 

accuracy but also significantly improves the efficiency of 

road maintenance (Hacefendiolu & Başaa, 2022). 

  

 

1.3. Significance of the Study 

1.3.1. The Potential to Enhance Road Safety and 

Reduce Maintenance Costs.  

Artificial Intelligence driven road management offers the 

potential of significantly enhance road safety while 

reducing costs through the application of deep learning 

and computer vision technologies. These advancements 

help prevent road defects and eliminate the need for time 
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constraining and error-prone manual inspections. 

Automated detection enables more accurate and reliable 

maintenance, ensuring roads remain in better condition. 

Costs savings are maximized by extending the lifespan of 

road infrastructure and reducing the frequency and scale 

of repairs. Therefore, AI driven road maintenance not 

only delivers improved road quality but also optimizes 

resource allocation, resulting in substantial economic 

benefits. 

 

1.3.2. Contribution to Research in AI-based Road 

Maintenance Systems. 

AI research in road maintenance has made significant 

progress, greatly improving the efficiency and quality of 

semantic crack segmentation in road images. Deep 

learning techniques can now detect and classify patchy 

roads and potholes in real-time, contributing to the 

extended lifespan of road infrastructure. Incorporating AI 

into road maintenance also promotes sustainability by 

enabling proactive and efficient management of 

resources. This study does not only advance road 

maintenance practices in North Cyprus but also enriches 

existing literature by performing pavement crack 

segmentation on a dataset specifically collected from 

roads in the Northern Cyprus region. 

  

 

Literature Review 

Road crack segmentation with deep learning is a very hot 

field and there is a lot of literature on this subject. The 

section compared the work of some of these researchers 

to identify the main problems and strengths of each. Road 

infrastructure can no longer be underrated as an asset for 

growth and social mobility. Pavement crack is unsafe, 

and late maintenance can be expensive. Pavement crack 

detection used to be an observation task done manually 

with the naked eye, but the downside is that it’s slow, 

subjective and error- prone (Lau, et al., 2020). 

 

Faced with these constraints, engineers have turned to 

computation to automate segmentation and detection of 

pavement cracks. DL algorithms – Convolutional Neural 

Networks (CNNs) in particular – are now the best 

prospects for crack segmentation– better, faster and more 

reliable (Lau, et al., 2020). 

 

In response to these limitations, scientists have used 

computation for automated pavement crack 

segmentation. Deep learning (DL) algorithms – 

Convolutional Neural Networks (CNNs) in particular – 

have become the perfect candidates for this purpose, with 

great promise for making pavement crack detection more 

accurate, efficient and objective (Lau, et al., 2020). 

 

2.1. Key Deep Learning Architectures 

The most popular deep learning architectures explored 

for crack segmentation in roads are: 

 

2.1.1. Fully Convolutional Networks 

FCNs are another most used type for semantic 

segmentation, and they dispense fully connected layers 

with convolutional layers so that you can provide input 

images of unlimited size. We have tested the crack 

detection for FCNs of all backbones, VGG16, VGG19, 

ResNet50. 

 

2.1.2. SegNet 

SegNet is also a 100% convolutional network just like U-

Net but with different decoder architecture. It has been 

used for crack segmentation in pavements such as 

concrete, asphalt, and bridge decks. 

 

2.1.3. Other Architectures: 

Other architectures have also been investigated like 

ResNet, DenseNet, PSPNet, DeepLabv3+ and GCN, all 

having their own advantages and disadvantages of 

accuracy, performance and complexity. 

 

2.2. Datasets And Evaluation Metrics 

A very important aspect of deep learning research is good 

datasets for training and testing. Some open-source crack 

detection datasets were created, each with its own 

features and drawbacks. Some commonly used datasets 

include: 

 

2.2.1. CrackForest 

Concrete crack data set with hand labeled ground truth. 

2.2.2. AigleRN 

A map of road crack images taken with street cameras. 

 

2.2.3. Crack500 

A map of road crack pictures from mobile phones. 

 

2.2.4. TRIMMED 

Collection of grayscale road crack images recorded with 

high-resolution line-scan camera. 

 

2.2.5. CFTD 

Collection of RGB road cracks image captured with 

consumer grade cameras. 

To test the effectiveness of crack segmentation 

algorithms, scientists often measure it with a mix of 

different metrics such as precision, recall, F1-Score, 

Intersection over Union (IoU). 

  

2.3. Challenges And Contributions from Previous 

Studies 

Lau et al. (2020) introduced a U-Net CNN with a ResNet-

34 encoder through transfer learning to overcome the 

inefficiencies of traditional crack detection methods like 

thresholding, morphology, and edge detection. Their 

model incorporated SCSE modules, progressive image 

resizing, and varying learning rates to optimize training. 

Tested on CFD and Crack500 datasets, the system 
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achieved F1 scores of 96% and 73%, outperforming 

larger models such as Split-Attention Network. 

 

Zhang et al. (2019) designed a context-aware semantic 

segmentation network that fused predictions from 

overlapping image patches using cross-state and cross-

space constraints. This approach allowed pixel-wise 

crack segmentation without retraining for different image 

sizes. Applied to CFD, TRIMMD, and CFTD datasets, it 

achieved state-of-the-art Boundary F1 scores while 

processing images in 0.7 seconds each, demonstrating 

efficiency, accuracy, and scalability for infrastructure 

crack assessment across diverse conditions. 

 

Gao et al. (2019) proposed a generative adversarial 

network (GAN)-based approach for crack segmentation, 

introducing U-GAN, CU-GAN, and FU-GAN, all using 

modified U-Nets as generators. The models were trained 

to distinguish real from fake crack images at the pixel 

level. On AigleRN, CFD, and HTR datasets, they 

outperformed existing methods in precision, though 

recall rates declined on noisy or blurry images. The study 

suggested advancing multi-scale convolution, feature 

fusion, and attention mechanisms. 

 

Pereira et al. (2019) addressed the inefficiency and 

subjectivity of manual crack inspections by developing a 

U-Net-based deep learning system for pavement and 

pothole segmentation. Data were collected via 

smartphones, and experiments showed the model 

achieved 97% accuracy with mean mIoU of 0.85. Despite 

dataset limitations, U-Net performed exceptionally well 

outside its original medical imaging domain, with future 

improvements anticipated through larger, more varied 

datasets and comparisons with newer architectures. 

 

Wang et al. (2021) compared eleven CNN-based 

semantic segmentation models, including FCN, PSPNet, 

UPerNet, and DeepLabv3+, using ResNet, VGG, and 

DenseNet backbones. Models were evaluated with IoU, 

accuracy, precision, recall, and F1 score. DeepLabv3+ 

with ResNet101 backbone performed best, particularly 

with spatial pyramid pooling. Results confirmed CNNs’ 

superiority over heuristic methods, though noise and 

dataset variations remained challenges. The authors 

recommended DeepLabv3+ and GCN as robust solutions 

for practical crack detection. 

 

Li et al. (2022) highlighted deep learning advances, 

showing CNNs like U-Net, HED, and SRN significantly 

outperform image processing for crack segmentation. 

They suggested integrating semantic segmentation with 

edge detection to overcome each method’s weaknesses. 

This combined framework improves accuracy in 

identifying fine crack properties such as width and 

length. Such detailed measurement offers practical 

benefits for pavement maintenance and management, 

demonstrating deep learning’s impact on safety and cost 

efficiency in infrastructure monitoring. 

 

Zhang et al. (2023) emphasized the shift from 

handcrafted, image-processing methods toward CNN-

based automated crack detection. Models such as U-Net, 

UperNet, ResUNet, and Pointrend produced strong 

results even under noisy and poorly lit conditions, 

proving more effective than earlier techniques. However, 

segmentation of small cracks and distinction from 

pavement features like stains or manhole covers 

remained difficult. Their study reinforced CNNs’ 

strengths while acknowledging persistent challenges in 

fine-scale crack identification and differentiation. 

 

Lee et al. (2019) proposed the Semantic Crack 

Segmentation Network (CSN) to address the limitations 

of edge-detection filters and early CNNs, which were 

restricted to patch-based methods and suffered from 

noise. CSN improved accuracy by processing entire 

images and avoiding sliding windows. To combat data 

scarcity, they generated synthetic crack images using 

Gaussian kernels and Brownian motion. Combining real 

and synthetic data enhanced training, leading to stronger 

segmentation performance in cluttered and complex 

scenes. 

 

Jia (2023) criticized the slowness and inaccuracy of 

manual inspections and image processing for pavement 

crack identification. They proposed an enhanced U-Net 

with an Efficient Channel Attention (ECA) module in the 

encoder and FCNHead decoder. This configuration 

strengthened crack feature extraction and model 

generalization. Their method proved particularly 

effective in detecting small cracks under challenging 

pavement conditions, offering a practical solution for 

improving segmentation performance and reliability in 

infrastructure maintenance and monitoring tasks. 

 

Benedetto et al. (2023) tackled crack segmentation 

challenges caused by noisy, obstructed, and overexposed 

images. They proposed a modified U-Net incorporating a 

ResNet50 encoder pre-trained on ImageNet, combined 

with residual structures to improve learning. Their model 

excelled in handling environmental obstructions and 

achieved more precise crack detection, especially for 

measuring crack width. Since crack width is essential for 

severity determination, the proposed system significantly 

enhanced the accuracy and usefulness of automated crack 

assessment tools. 

 

Panella et al. (2022) reviewed deep learning models, 

focusing on CNNs like FCNs and U-Net for crack 

segmentation. They analyzed the trade-off between 

model complexity and loss of fine details due to pooling 

layers. U-Net’s skip connections allow it to preserve 

spatial information across layers, enhancing accuracy 



International Conference on Artificial Intelligence and Cybersecurity 2025 
Copyright 2025 © Canadian Tech-Institute for Academic Research.  239 

and efficiency. The review underscored U-Net’s 

biologically inspired design and superior performance in 

separating "what" and "where" information compared 

with simpler CNNs, making it a reliable segmentation 

architecture. 

 

Al-Huda et al. (2023) introduced KTCAM-Net, a hybrid 

deep learning model combining classification and 

segmentation networks with Class Activation Maps 

(CAM). KTCAM-Net employed hybrid loss functions, 

crack boundary filtering, and overlapping fusion 

algorithms, producing fine crack localization even under 

noise and imbalance. Benchmark datasets confirmed its 

superior performance, particularly for detecting thin 

cracks. The model’s flexibility extended beyond cracks, 

showing potential for broader surface defect detection in 

inspection tasks, highlighting its innovative contribution 

to segmentation methods. 

 

Nguyen et al. (2021) proposed a two-stage CNN to 

address noisy, low-resolution crack images. The first 

stage used a five-layer CNN to localize cracks and 

remove artifacts, while the second encoder-decoder 

network segmented pixels in the localized regions. Tested 

on the 2StagesCrack dataset, the method outperformed 

single-stage models by handling low-quality images 

effectively. The authors concluded that this two-stage 

system was both accurate and computationally efficient 

for real-world pavement crack segmentation. 

 

Chen et al. (2020) presented Progressive Contextual 

Segmentation Network (PCSN), built on SegNet with a 

VGG16 encoder pre-trained on ImageNet. They applied 

augmentation methods like flipping, rotation, and 

contrast scaling to improve dataset diversity. Compared 

to Mask R-CNN and FCN-8s, PCSN achieved superior 

crack detection under difficult conditions, balancing 

inference speed and segmentation quality. The study 

showed how input image size impacted performance, 

with larger inputs providing richer crack details at the 

cost of slower processing. 

 

Fang et al. (2020) categorized crack detection into image 

processing, classical machine learning, and deep 

learning. They noted that while thresholding and edge 

detection are noise-sensitive, machine learning methods 

like SVMs lacked robustness. CNNs achieved major 

advances, though challenges included high 

computational costs, noisy faint cracks, and difficulty 

maintaining both global and local context. Their review 

underscored the advantages of deep learning but 

highlighted the ongoing need for efficiency 

improvements and better contextual data integration. 

 

Yu et al. (2021) compared one-stage and two-stage deep 

learning detection models for crack detection. Two-stage 

models like Faster R-CNN achieved high accuracy by 

using region proposal networks, while one-stage models 

such as YOLO and SSD traded some accuracy for speed, 

making them more suitable for industry. Both approaches 

struggled when applied to UAV-acquired images, which 

are much larger than standard datasets like ImageNet or 

VOC, revealing limitations in scalability for field 

conditions. 

 

Ali et al. (2021) examined CNNs for automated, real-

time crack detection in buildings, highlighting their 

advantages over costly and dangerous manual 

inspections. CNNs could classify images, localize cracks 

with bounding boxes, and perform pixel-level 

segmentation. However, segmentation accuracy was 

hampered by class imbalance, inconsistent lighting, and 

obstacles in images, which biased networks against crack 

pixels. Their study emphasized these practical challenges 

while confirming CNNs’ effectiveness for crack 

detection tasks in diverse real-world applications. 

 

Yan et al. (2022) addressed the difficulty of detecting 

cracks in low-light conditions by proposing CycleADC-

Net. The system first employed CycleGAN to translate 

dim images into brighter ones without altering crack 

structure, then applied a dual-channel encoder-decoder 

with attention to merge global and local signals. This 

approach improved detection accuracy in poorly lit 

scenarios, enabling robust crack segmentation where 

conventional deep learning models typically fail due to 

lighting limitations. 

 

Xu and Liu (2022) solved the challenge of limited 

training data by employing DCGAN to generate 

synthetic pavement crack images. Expanding the dataset 

from 1,608 to 6,000 images improved CNN classification 

accuracy from 80.75% to 91.61% while reducing class 

imbalance. Their findings demonstrated the value of 

generative models for creating realistic training data, 

enhancing both model performance and dataset diversity 

in pavement crack detection applications, particularly 

when real-world samples are scarce. 

 

Chen et al. created a dataset of 10,000 manually labeled 

pavement and bridge crack images to address the lack of 

public datasets. Using SegNet with a VGG16 encoder 

and data augmentation, they developed PCSN, which 

achieved mean average precision of 83%, outperforming 

Mask R-CNN (42%) and FCN-8s (67%). Larger input 

sizes improved segmentation performance, though 

smaller inputs offered faster inference. Their work 

demonstrated the importance of dataset quality and 

architecture design for reliable crack detection. 

 

2.4. Addressing Data Limitations 

2.4.1. Data Augmentation 

Most research works use data augmentation to scale the 

size and number of training datasets, decreasing 
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overfitting, and achieving model generalization. Certain 

common augmentation tricks include rotation, flip, 

scaling, and cropping images. 

 

2.4.2. Cross-Dataset Testing 

To test models for their adaptation to different imaging 

scenarios and crack types, some researchers have run 

cross-dataset testing — training models on one dataset 

and running them against another. 

 

2.5. Handling Complex Noise and Background 

2.5.1. Modules for Attention 

Attention modules such as Convolutional Block 

Attention Module (CBAM) or Efficient Channel 

Attention module (ECA)) are added to CNN 

architectures for feature extraction and attention to 

specific image areas. These modules are used to help the 

model deconstruct cracks from noise and other non-

relevant features. 

 

2.5.2. Residual Structures 

Residual structures like ResNet have been demonstrated 

to improve performance of deep learning models by 

allowing training of deeper networks. Adding skip 

connections that skip one or more layers is how residual 

structures solve the vanishing gradient problem and make 

the information flow throughout the network. 

  

2.6. Computational Efficiency 

2.6.1. Improving Network Design 

Network engineers are constantly looking for new ways 

to tweak network design, so it runs faster and with 

accuracy. Such as searching for lightweight architectures, 

delimiting parameters, and learning from the effective 

training strategies. 

Although pavement crack segmentation is making great 

progress, there are still obstacles, and more research 

needs to be done: 

 

2.6.2. More Capable and Generalizable Models 

Typical models can’t handle the complexities of real-

world scenarios like lighting conditions, shadow 

interference, water stains, crack types, etc. The research 

needs to be more robust and generalizable models that 

can manage these problems well. 

 

2.6.3. Crack Width Estimation 

Most research is centered around crack segmentation, but 

the crack width estimate is important for pavement 

cleaning and repair. Our next studies should try to build 

crack width estimation into the segmentation equations. 

2.6.4. Instant Crack Detection 

The real-time crack detection is required in applications 

like autonomous road monitoring and maintenance 

planning. The studies should keep developing 

computationally efficient models and algorithms that can 

perform in real time on resource limited machines. 

Deep learning has taken the pavement crack 

segmentation process to a whole new level, with promise 

for automating pavement inspection and maintenance. 

Various CNN architectures and methods have been able 

to show promising results but there’s more research that 

needs to be done on robustness, generalization, crack 

width estimation, and real-time performance. 

Researchers noted that in future research, deep learning 

for pavement crack segmentation will be ever more 

integral to road safety and resilience. 

  

Three Background 

3.1. Computer Vision 

Computer vision is the area of artificial intelligence (AI) 

that lets computers and systems process visual data in the 

world like digital pictures and videos. Through ingesting 

and visualizing these data, computer vision systems can 

do the things humans do most of the time, such as object 

detection, image classification and segmentation tasks. 

Computer vision is as old as it gets: research began in the 

1960s, to help machines see even simple pictures. The 

digital image, computational capability and algorithmic 

development that has followed over the decades have led 

to the advancement of the industry. Notably, deep 

learning and neural networks have enabled significantly 

higher image recognition and detection. 

 

3.1.1. Core Techniques and Technologies 

Today’s computer vision is dependent on some important 

technologies: 

• Machine Learning & Deep Learning: These are 

methods that can learn from millions of images 

and increase patterns and predictions. 

• Convolutional Neural Networks (CNNs): CNNs 

are neural networks trained specifically on 

pixels and so, are ideal for image classification. 

• Computer vision has a huge number of 

applications in many different sectors: 

• Healthcare: Performs medical imaging for 

diseases and abnormalities (X-ray, MRI to 

diagnose). 

• Auto industry: Creating safe perception and 

control of the environment with object 

recognition and lane-recognition for 

autonomous cars. 

• Manufacturing: Supporting automatic 

inspection and quality control, where product 

defects are found on production lines. 

• Safety and Surveillance: Creating surveillance 

with face detection and activity detection to 

ensure security and safety. 

• Current research in computer vision is about to 

make it more accurate, more efficient, and more 

applicable in various fields. Combining 

computer vision with other AI capabilities 

including natural language processing and 

robotics, there are more opportunities for 
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creative and usable solutions across many 

industries. 

 

3.2. Machine Learning and Deep Learning 

Machine learning (ML) is a subset of artificial 

intelligence (AI) that helps systems learn from data, find 

patterns, and make decisions without any human 

involvement. With algorithms and statistical 

representations, ML makes it possible for computers to 

perform tasks that cannot be programmed for each action 

in the program. 

 

Deep learning on the other hand is a branch of machine 

learning (ML) in artificial intelligence (AI) based on 

algorithms modelled after the brain’s structure and 

activity — artificial neural networks. These algorithms 

search for patterns and make choices based on layers of 

data from which more advanced features are extracted. 

 

In terms of the theory, deep learning has been around 

since the 1940s, when neural network models were first 

built. Researchers such as Frank Rosenblatt first 

developed the perceptron, an early neural network 

architecture capable of rudimentary pattern recognition, 

in the 1950s and ’60s. But computational restrictions and 

theoretical problems held up progress. 

 

These regained momentum in the 1980s when the 

backpropagation algorithm was developed to train multi-

layer neural networks better. But even with all these 

improvements, it wasn’t until the 2000s, when the 

computing power became more powerful and the 

availability of more data, that deep learning really started 

making big gains. 

  

 

3.3. Convolutional Neural Networks 

CNNs are a type of deep learning model that works on 

data with a grid structure like images. They have been the 

key technology of computer vision and enables 

computers to perform tasks such as image and video 

recognition, object recognition and segmentation. In 

2012, the field made its breakthrough when AlexNet by 

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton 

won the ImageNet Large Scale Visual Recognition 

Challenge. AlexNet’s accomplishment demonstrated the 

power of CNN in tackling advanced image classification 

problems (Draelos, 2019). 

 

3.3.1. Core Components and Architecture 

An ordinary CNN architecture consists of the following 

key players: 

 

• Convolutional Layers: These layers perform 

convolutional functions on the input, thus 

identifying spatial hierarchies and local trends 

in the data. 

• Activation Functions: Non-linear functions 

such as ReLU (Rectified Linear Unit) are used 

to introduce non-linearity to the model and 

allow it to learn complex patterns. 

• Pooling Layers: Pooling layers perform down-

sampling to reduce the dimension of the data 

and make the representations more tractable and 

stable with slight translations. 

• Fully Connected Layers: After a few 

convolutional/pooling layers, high level neural 

network reasoning occurs through fully 

connected layers that links each neuron of a 

layer to each neuron of a subsequent layer. 

• CNNs are used in a variety of applications, 

some of them include: 

 

▪ Image & Video Recognition: Widely 

applied in face recognition software, 

object detection and video analysis. 

▪ Medical Imaging: CNNs are used to 

diagnose illnesses based on medical 

images (MRIs, CT scans, X-rays etc.). 

▪ Autonomous Vehicles: They make 

self-driving cars to see and interpret 

the world by analyzing images from 

cameras. 

• Natural Language Processing: CNNs are used 

for text classification (sentiment detection, 

spam detection). 

 

3.4. Semantic Segmentation of Pavement Cracks 

This is the task of categorizing every pixel in an image to 

correctly determine and mark which regions of an image 

is a crack. This is necessary for the maintenance of 

infrastructure and transportation safety. 

 

Pavement crack detection has always been done 

manually with some simple image processing like edge 

detection and thresholding. These methods were 

promising as early solutions but had low accuracy, 

particularly in multi-light, multi-noise environments. The 

advent of deep learning and the improvement of 

computation power has ushered a more efficient way of 

detecting cracks in images using more advanced 

techniques such as U- Net. 

 

3.5. U-Net Architecture 

U-Net first published in "U-Net: Convolutional 

Networks for Biomedical Image Segmentation" by 

Ronneberger et al., (2015) is a special kind of 

convolutional neural network (CNN) to perform image 

segmentation efficiently. It has become an ideal 

architecture for image segmentation tasks, which are to 

find each pixel in a picture and classify it into a single 

category such as crack or no-crack. U-Net is a pipeline 

with two main sections: a decoder and an encoder. 
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3.5.1. Encoder 

The encoder analyses the image and extracts important 

features, creating a condensed summary of the visual 

data. 

 

3.5.2. Decoder 

The decoder takes the condensed information from the 

encoder and gradually reconstructs the image but with a 

focus on highlighting those specific features related to 

cracks. 

  

3.5.3. Skip Connections 

This is what makes the U-net very effective, it links the 

encoder and the decoder stages. These connections allow 

the network to retain both the fine grain details from the 

original image and the high-level understanding gained 

by the encoder. It is combining the big picture and those 

tiny details. 

 

3.5.4. Convolutional Layers 

Responsible for extracting features from the image like 

edges, textures and patterns 

 

3.5.5. Activation function 

Determines whether a neuron should fire or not. So, it is 

not just about detecting a feature but about deciding how 

important that feature in the context of crack detection 

 

3.5.6. Pooling layers 

Responsible for down sampling the image, making 

computations more manageable while retaining the most 

important information. It is like creating a more efficient 

summary of the image data without losing those crucial 

details. 

 

3.5.7. Dropout 

This helps prevent a common problem in machine 

learning called overfitting. Overfitting is like when a 

student memorizes the answers for a test but cannot apply 

that knowledge to new problems. So, dropout layers help 

the model generalize better to accurately identify cracks 

in any image. Even with the best architecture, a model 

needs guidance to learn effectively, that is where the loss 

function and optimizer comes into play. 

 

3.5.8. Loss Function 

Think of the loss function as coach that yells at a team 

when they mess a play. It measures how far off the 

model's predictions are from the actual cracks in the 

images, guiding the model to improve its performance. 

 

3.5.9. Optimizer 

Think of the optimizer as the coach constantly adjusting 

strategies and techniques to minimize those mistakes, in 

this case to minimize the loss. 

  

3.5.10. Intersection Over Union (IoU) 

The intersection over union is how we know the model 

actually works. It measures how well the models 

predicted crack overlap with the actual crack in the 

image. Perfect score of 1 means the model’s prediction 

perfectly matches the real crack. The model developed in 

this thesis achieves some seriously impressive IoU scores 

demonstrating its accuracy in identifying and delineating 

those cracks. 

 

 
 

Figure 3.1: A standardized U-Net architecture, which 

lays a core premise to this thesis 

Source: (https://lmb.informatik.uni-

freiburg.de/people/ronneber/u-net/, 2015) 

 

Methodology 

Developing a deep learning-based solution for the 

automatic segmentation of cracks in pavement images 

serves as the central focus of this study. Framed as a 

binary image segmentation task, the process involves 

classifying each pixel in an input image as either part of 

a crack or a non-crack region. 

 

This chapter outlines the methodology employed to 

achieve accurate segmentation of pavement cracks using 

deep learning. Key steps include data preprocessing, 

normalization, model training, validation, testing, and 

evaluation. The aim is to create and train a robust model 

that delivers precise and reliable results, paving the way 

for efficient and automated road maintenance solutions. 

 

 

 

 

4.1. Dataset 

4.1.1. Data Description 

The dataset consists of annotated images designed for 

pavement crack detection and classification. It contains 

893 images, each labeled with polygonal annotations for 

various types of pavement distresses. The annotations 

which were done by an expert include geometric 

coordinates for the regions of interest, enabling precise 

identification of defects. The dataset is organized and 

timestamped, indicating updates and task details, making 

it suitable for training and validating computer vision 
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models in infrastructure inspection. The dataset contains 

the following classes: Fatigue cracking, Block cracking, 

Edge cracking, Wheel path longitudinal cracking, non-

wheel path longitudinal cracking, Transverse cracking, 

Patch, Potholes, Manholes, Bumper removal, Bleeding, 

Raveling. However, since this this study performs binary 

segmentation, therefore all the twelve classes were 

regarded as cracks and the background as none crack, 

resulting into two classes. 

  

4.1.2. Data Preprocessing 

Pavement crack images and their corresponding ground 

truth were generated. The dataset is divided into training, 

validation, and test subsets for model training and 

evaluation. The training is conducted for various sets of 

parameters with 90% of the images for training and 

validation (10% of the training dataset used for 

validation), and 10% used for testing. 

Images and masks were resized to a fixed resolution to 

standardize the input for the U-net architecture. For 

grayscale images, a channel dimension was added to 

ensure compatibility with the network architecture. 

Masks are converted to binary (0 or 1) and stored as 

single-channel images where 0 indicates none crack and 

1 crack regions. 

 

4.2. Model Design 

A U-Net architecture was chosen for its effectiveness in 

semantic segmentation tasks, particularly for 

infrastructure images where fine-grained details are 

essential. Custom layers were defined to allow the model 

to learn the features in the dataset from the ground up 

without any transfer learning. This resulted to a more 

simplified and efficient model. Below is a description of 

the layers in the developed model. The U-Net model 

consists of the following detailed layers and components: 

 

4.2.1. Input and Scaling 

The input layer accepts images with dimensions 

(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS). A 

Lambda layer normalizes pixel values by dividing every 

pixel value by 255.0 to scale them between 0 and 1. 

 

4.2.2. Contraction Path 

This path progressively down samples the input while 

extracting features using convolutional and pooling 

operations: 

• Layer 1: Two convolutional layers with 64 

filters of size 3x3, followed by a dropout rate 

of 0.1. Padding is set to same, maintaining the 

spatial dimensions. 

• MaxPooling: A pooling operation with a 2x2 

window reduces the spatial dimensions by half. 

• Layer 2: Two convolutional layers with 128 

filters of size 3x3, followed by dropout rate of 

0.2. 

• MaxPooling: A 2x2 pooling layer reduces 

dimensions further. 

• Layer 3: Two convolutional layers with 256 

filters of size 3x3, followed by dropout of rate 

0.3. 

• MaxPooling: A 2x2 pooling layer reduces 

dimensions again. 

 

4.2.3. Bottleneck 

This section represents the deepest part of the network, 

capturing high-level abstract features: Two 

convolutional layers with 512 filters of size 3x3, 

followed by a dropout layer rate 0.4. 

 

4.2.4. Expansive Path 

This path upsamples the feature maps and combines them 

with corresponding feature maps from the contraction 

path via skip connections to recover spatial information 

• Layer 5: A transposed convolution layer 

upsamples the feature maps, halving the number 

of filters to 256. The output is concatenated with 

features from Layer 3. Two convolutional layers 

with 256 filters 3x3 refine the combined 

features, with dropout of rate 0.3. 

• Layer 6: Another transposed convolution 

upsamples to 128 filters. The output is 

concatenated with Layer 2. Two convolutional 

layers with 128 filters 3x3 follow, with dropout 

rate 0.2. 

• Layer 7: A final transposed convolution 

upsamples to 64 filters. The output is 

concatenated with Layer 1. Two convolutional 

layers with 64 filters 3x3 refine the features, 

with dropout of rate 0.1. 

 

4.2.5. Output Layer 

A final convolutional layer with 1 filter of size 1x1 and a 

sigmoid activation function produces a single-channel 

output, representing the pixel-wise probability map for 

segmentation. Overall, the network maintains critical 

spatial information by concatenating skip connections 

from the contraction path to the expansive path, 

effectively leveraging both low-level details and high-

level features. The number of filters doubles in the down 

sampling path to enhance feature representation and 

halves symmetrically in the up sampling path to match 

the input dimensions. 

 

4.2.6. Activation Functions 

In an artificial neural neuron, an activation function 

decides whether to fire a neuron or not. In other words, 

is my output equal to 1 or 0. One if it is activated and 

zero if it is not activated in the case of a binary problem. 
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Figure 4.1: Representation of a simple neural network 

with one node 

Source : (https://www.mdpi.com/2071-

1050/16/23/10756, 2024) 

 

4.2.7. Sigmoid Activation Function 

The output layer uses a single convolution operation with 

a sigmoid activation function to generate pixel-wise 

probabilities for the presence of cracks. The sigmoid 

function is a mathematical function commonly used in 

machine learning and neural networks. It maps any input 

value to a value between 0 and 1, making it ideal for 

binary classification problems or tasks where 

probabilities are required. 

 

 
 

Figure 4.2: Sigmoid function 

Source: (https://www.quora.com/What-is-the-ReLU-

layer-in-CNN, 2020) 

 

4.2.8. ReLU Activation Function 

ReLU is the most used activation function in the 

convolutional layer of a convolutional neural network 

especially for image classification, objection and 

segmentation. The ReLU activation function is expressed 

mathematically below. If z is greater than 0, the output is 

z else if z is less than or equal to 0, the output is 0. 

 

 

Figure 2.3: ReLU Activation Function 

Source: (https://www.quora.com/What-is-the-ReLU-layer-

in-CNN, 2020) 

 

 

4.2.9. Loss Function 

Also known as the cost function or error function quantifies 

the error between output of the algorithm and the given target 

value. Binary cross-entropy is used as the primary loss 

function for segmentation tasks. 

 

4.2.10. Optimizer 

An optimizer updates the model in response to the output of 

the loss function. Optimizers assist in minimizing the loss 

function. The Adam optimizer was used due to its 

effectiveness, and it is popularly used in the convolutional 

neural networks. Adam stands for Adaptive moment 

estimation. According to Kingma and Ba (2015) Adam is 

computationally efficient with little memory requirements 

and typically require little to no tuning. 

 

4.3. Experimental Setup 

The study involved training, validating, testing and evaluating 

the U-net model using a diverse dataset of pavement images 

containing various crack types and severities. The dataset was 

divided into three subsets: training, validation, and testing. 

The training subset was used to optimize the model's 

parameters, while the validation subset was employed to 

monitor the training process and prevent overfitting. The 

testing subset, consisting of unseen images, was used to test 

the model's performance on new data. Various 

hyperparameters were investigated to optimize the U-net 

model's performance, including: 

 

4.3.1. Image Size 

Experiments were conducted with different image dimensions 

(width and height), including 128 and 256 pixels. 

 

4.3.2. Batch Size 

The number of images processed in each training iteration 

was varied, exploring batch sizes of 8, 16, 32, and 64. 

  

 

4.3.3. Number of Filters 

The number of convolutional filters in the U-net architecture 

was adjusted to explore the impact on performance. 

 

4.3.4. Bottleneck Dropout 

An increase in dropout of 0.5 was introduced at the bottleneck 

of the U-net architecture to explore its impact on mitigate 
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overfitting. Overfitting randomly drop out a proportion of 

neurons during training. 

 

 
Figure 4.4: Flowchart of Methodology 

 

Below is the pseudocode for the flowchart of the methodology 

shown above START 

#Preprocess images 

✓ Generate masks 

✓ Resize images and masks 

✓ Split dataset # Normalize dataset 

✓ Scale pixels values between 0 and 1 #Train and 

validate the Model 

For I = 1 : EPOCHS 

For j = 1 : BATCHES 

✓ Train the model 

✓ alidate the model End 

End 

# Test the model 

For i = 1 : PREDICTIONS 

If preds > 0.5 

Crack 

 

End 

Else 

No-crack 

# Evaluate the model 

COMPARE Ground Truth Masks vs. Predicted Masks 

DISPLAY RESULT 

END 

 

 

4.4. Evaluation Metrics 

4.4.1. Confusion Matrix 

A Confusion Matrix is a table summarizing the frequency of 

predicted vs. actual pixels for a given set of data. This is the 

most common and concise way to evaluate performance and 

compare models against one another. A confusion matrix can 

be used to derive several types of model performance metrics, 

including accuracy, precision and recall. 

 
Figure 4.5: Confusion Matrix 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
         − − − −          4.1 

 

Accuracy helps answer the question, of all predictions, what 

percentage were correct? However, accuracy alone is not 

enough to properly evaluate a classification model when one 

class is rare, a model may have high accuracy but a useless 

model. Precision and recall add context and may be superior 

to accuracy in some cases. This is true for many segmentation 

and classification problems, where the focus is on predicting 

one class correctly than the other. For example, in pavement 

crack segmentation, the goal is to segment cracks. A very 

small percentage of regions on an image is actually going to 
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be cracks. So, the modelling effort is going to be on 

segmenting cracks, and not on regions with no cracks. 

Precision and recall are metrics that focus on how well the 

model predicts the positive class, that is cracks in this case. 

 

4.4.3. Precision 

Precision answers the question, of all predicted positives 

(crack pixels), what percentage were correct? 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
          − − − − − − −           4.2 

 

4.4.4. Recall 

Recall answers the question, of all actual positives (crack 

pixels), what percentage were predicted correctly. Recall is an 

important metric when we are more concern with False 

Negatives which is the case in the context of pavement crack 

segmentation. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          − − − − − − −           4.3 

 

4.4.5. F1 Score 

F1 score measures the harmonic mean of precision and recall. 

In mathematics the harmonic mean, which is favored for 

means of ratios as it measures an equal weight on both ratios. 

It will thus be lower than the standard arithmetic mean. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
         − − − −          4.4 

 

 

4.4.6. Intersection over Union (IoU) 

This metric compares the area of overlap between the 

predicted masks and the actual or ground truth masks to the 

total area of the two masks combined. The IoU ranges from 

0 (no overlap) to 1 (perfect overlap). 

 

 
Figure 4.6: Intersection over Union 

Source:(https://wiki.cloudfactory.com/docs/mp-

wiki/metrics/iou-intersection-over- union, 2024) 

 

4.5. Implementation Details 

Tools, frameworks, and hardware/software specifications. 

 

The following tools and frameworks were used to develop and 

train the model: 

 

• TensorFlow and keras 

• Visual studio code using the Jupiter notebook 

extension to create notebooks 

• Python and other python libraries 

 

The model was trained on a PC with an Nvidia GPU with the 

following hardware specifications: 

• 16 GB RAM 

• 16 GB NVIDIA GeForce RTX 4060 GPU 

• 512 GB SS 

 

 

Results and discussion 

5.1. Results 

 

The performance of the U-Net model was assessed using 

various metrics, including accuracy, precision, recall, F-score, 

and Intersection over Union (IoU) score. The U-net model 

demonstrated promising results in segmenting pavement 

cracks. Table 1 present the detailed results for the testing 

phase. This table provide a comprehensive overview of the 

model's performance across different experiments, allowing 

for a comparative analysis of the impact of various 

hyperparameter configurations 

 

 

Table 5.1: Testing Results 

 

 

 

 

 

 

 

 

 

 

 

 

Exp Accurac

y 

Precisio

n 

Reca

ll 

F1Scor

e 

Epoc

h 

Batch 

size 

IoU 

score 

1 98.68 82.97 76.88 79.81 56 8 66.40 

2 98.63 82.55 75.67 78.96 52 32 65.24 

3 98.55 85.42 68.94 76.30 62 64 61.68 

4 98.63 82.53 75.74 78.99 34 8 65.27 

5 98.61 84.88 71.93 77.87 56 32 63.77 

6(bn do = 0.5) 98.65 82.29 76.80 79.45 58 16 64.42 

7(W&H = 256) 98.66 85.57 72.37 78.42 25 8 64.50 

8 98.67 81.47 78.34 79.87 48 16 66.49 

9 (32 filters 

layer) 

98.54 80.52 75.23 77.79 61 32 63.65 

10 (16 filters 

layer) 

98.67 83.33 75.87 79.43 36 8 65.88 
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Table 5.2: Confusion Matrix 

 

Experiment 1 

393528 2191 

3209 10672 

 

Experiment 2 

393499 2220 

3377 10504 

 

Experiment 3 

394086 1633 

4312 9569 

Experiment 4 

393493 2226 

3368 10313 

 

Experiment 5 

393517 2202 

3799 10082 

 

Experiment 6 

393425 2294 

3220 10661 

Experiment 7 

393493 2226 

3368 10313 

 
Experiment 8 

1573225 9859 

11982 43334 
 
Experiment 9 

393193 2526 

3438 10443 

Experiment 10 

1574690 8394 

13346 41970 
 

 

5.1.1. Results From Literature 

Below is a list of papers taken from previous studies. The 

results of the evaluation metrics from these studies have been 

shown in table 

1. Generative Adversarial Networks for Road Crack 

Image Segmentation 

2. Deep Learning-Based Semantic Segmentation 

Methods for Pavement Cracks 

3. U-Net-Based CNN Architecture for Road Crack 

Segmentation 

4. Semi-supervised semantic segmentation network for 

surface crack detection 

5. Hybrid deep learning pavement cracks semantic 

segmentation 

6. Two-stage convolutional neural network for road 

crack detection and segmentation 

 

Table 5.3: Results from previous studies 

Title Accuracy Precision Recall F1-score 

1 N/A 75.06 55.19 60.48 

2 76.24 52.73 75.95 80.89 

3 N/A 85.34 68.13 75.77 

4 N/A 82.39 56.88 67.30 

5 N/A 64.10 64.10 62.40 

6 N/A 77.00 75.00 72.00 

 

5.1.2. Visualization of Segmentation Results 

Predictions on random samples from the training, validation, 

and test datasets were visualized. This included: 

• Input image: This is an unseen original image from 

the test dataset 

• Ground truth mask: This is the mask generated for 

the original image. 

• Predicted mask: This is the image with only the 

crack regions painted by the U-Net model. 

 

The visualization corroborated the results from the evaluation 

metrics which indicated high precision and recall, affirming 
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the model's capability to segment pavement cracks accurately. 

By employing robust preprocessing, custom metrics, and 

extensive visualization, the workflow ensures reliable 

segmentation results suitable for practical deployment. 

 

5.1.3. Thresholding 

The sigmoid output of the model was thresholded at 0.5 to 

convert probabilities into binary predictions. 

 

5.1.4. Inference Results 

The trained model was tested on a separate test set. A random test image is displayed with its corresponding ground truth and 

predicted masks to verify the correctness of the predictions. 

 

 
 

Figure 5.1: Screenshot of inference result 

 

To clearly visualize which regions of the image the model has been able to clearly segment as crack and those that the model 

missed, the ground truth mask coloured in green and predicted mask coloured in red has been overlayed over each other. When 

red and green are combined, the resulting color is yellow. Therefore, the regions coloured yellow indicates the pixels that the 

model correctly predicted as cracks. Secondly, the regions coloured red indicate pixels that the model wrongly predicted as 

cracks and finally the regions coloured green are those cack pixels could not pick up. 

 

 
 

Figure 5.2: Overlayed Screenshot of Inference Result 1 

 

The results inferred that the U-Net was able to learn the features and as a result could segment cracks in any image that contains 

crack regions. Below are additional inference screenshots. 
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Figure 5.3: Overlayed Screenshot of Inference Result 2 

 

 
 

Figure 5.4: Overlayed Screenshot of Inference Result 3 

 

 
 

Figure 5.5: Overlayed Screenshot of Inference Result 4 
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Figure 5.6: Overlayed Screenshot of Inference Result 5 

 

5.2. Discussion 

5.2.1. Analysis of Testing Results 

Table 3 presents the results on the testing set, providing the 

most crucial evaluation of the model's performance on unseen 

data. Similar to the validation results, the testing accuracy 

remained consistently high, ranging from 98.51 to 98.67. The 

precision, recall, F-score, and IoU scores demonstrated 

variations based on the hyperparameters. The model with a 

batch size of 16 and image dimensions of 256 x 256 achieved 

the highest IoU score of 66.49, signifying its effectiveness in 

accurately segmenting cracks on new data. 

 

5.2.2. Impact of Hyperparameters 

The experimental results highlight the influence of 

hyperparameters on the U-net model's performance. The 

choice of image size, batch size, number of filters, and 

bottleneck dropout all contributed to variations in the 

evaluation metrics. 

Key observations regarding the impact of hyperparameters 

include: 

 

• Image size: Increasing the image size from 128 x 128 

to 256 x 256 generally resulted in improved 

performance, particularly in terms of IoU score. 

Larger images provide more contextual information, 

allowing the model to better capture crack features 

and boundaries. 

• Batch size: The optimal batch size varied depending 

on other hyperparameters. In some cases, smaller 

batch sizes led to better results, potentially due to 

improved generalization. However, in other cases, 

larger batch sizes were beneficial. 

• Number of filters: Adding more filters to the U-net 

architecture generally improved performance, 

particularly the IoU score. Increasing the number of 

filters enhances the model's capacity to learn 

complex features, leading to more accurate 

segmentation. 

• Bottleneck dropout: Introducing a dropout layer at 

the bottleneck of the U-net architecture improved 

performance in some experiments, suggesting its 

effectiveness in mitigating overfitting and enhancing 

generalization. 

The findings of this study demonstrate the effectiveness of the 

U-net architecture for automated pavement crack 

segmentation. The model achieved high accuracy and 

promising IoU scores on both the validation and testing sets, 

indicating its ability to generalize to unseen data. The choice 

of hyperparameters played a significant role in optimizing 

performance, emphasizing the 

importance of careful hyperparameter tuning. The results 

suggest that U-net based crack segmentation systems have the 

potential to significantly improve road maintenance and 

safety inspections by enabling automated, efficient, and 

accurate crack detection. 

 

Conclusion 

In conclusion, this thesis highlights the transformative 

potential of deep learning, particularly through the U- Net 

architecture, in addressing the pressing challenges of road 

maintenance. The model developed showed impressive 

evaluation and inference results in segmenting pavement 

cracks. The study validates the effectiveness of U-Net in 

learning complex patterns and accurately distinguishing 

between crack and non- crack pixels. This capability 

underscores the model’s utility in tackling real-world 

infrastructure issues. The research further emphasizes the 

critical role of hyperparameter tuning in optimizing model 

performance. Key factors such as image size, batch size, the 

number of filters, and dropout layers significantly influence 

the accuracy and efficiency of crack segmentation, with larger 

image sizes (256x256) yielding notably better results. This 

insight provides valuable guidance for future advancements 

in similar applications of deep learning. 

Beyond its technical contributions, the study demonstrates the 

immense potential of automated crack detection systems to 

revolutionize road maintenance practices. By reducing 
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reliance on time-consuming, error-prone manual inspections, 

these systems enhance efficiency, improve safety, and 

minimize risks to inspection personnel. This aligns with 

broader goals of modernizing infrastructure management and 

ensuring sustainable road safety solutions. This work also 

makes a meaningful contribution to the growing body of 

research on AI-driven infrastructure maintenance. It 

showcases the application of deep learning techniques to a 

critical problem—segmentation of pavement cracks—and 

lays a strong foundation for future studies. The findings are 

particularly relevant for regions like Northern Cyprus, where 

high traffic volumes and limited infrastructure exacerbate 

road maintenance challenges. 

 

Ultimately, this thesis not only confirms the feasibility and 

efficiency of U-Net-based crack segmentation but also opens 

pathways for further exploration. Future research could focus 

on extending the model's capabilities to estimate crack 

dimensions, enable real-time detection, and enhance 

robustness under diverse environmental conditions. These 

advancements hold the promise of making automated road 

maintenance systems even more practical, scalable, and 

impactful in addressing global infrastructure needs. 
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