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Abstract

This thesis explores the use of deep learning, specifically
Convolutional Neural Networks (CNNs), for automated
pavement crack segmentation in North Cyprus,
addressing the need for efficient road maintenance. The
study emphasizes the limitations of manual inspection
and introduces a CNN-based U-Net architecture,
developed to automate feature extraction, and enable
more accurate and efficient crack segmentation.
Implementing a U- Net model with custom layers to learn
features without transfer learning forms the core of this
methodology, utilizing ReLU and sigmoid activation
functions, binary cross-entropy as the loss function, and
the Adam optimizer. The model is evaluated using
metrics including accuracy, precision, recall, F1 score,
and JoU, achieving over 98% accuracy and
demonstrating optimal performance with larger image
sizes (256x256). These results highlight the potential of
U-Net based crack segmentation systems to significantly
improve road maintenance and safety.
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1. Introduction

This research aims to use artificial intelligence to
improve road maintenance in Northern Cyprus. It
underscores the poor quality of regional roads, which are
riddled with cracks, and the manual detection methods
that are simply inadequate. Instead, it proposes the use of
Convolutional Neural Networks (CNNs) to detect and
segment those cracks in an automated manner—an
approach many researchers have argued is much more
efficient and accurate than visual inspections. The road
maintenance "problem" (the amount and the quality of
surveillance and action necessary to keep a road drivable)
is a common one, but this research covers a region with
a specific set of geological and climatic conditions that
are unusual in comparison to most of the other regions in
the world where road maintenance is studied.

The road network in Northern Cyprus, especially in
major urban areas like Nicosia, Kyrenia, and Famagusta,
has a real tough time due to the huge number of vehicles
and constrained infrastructure. Mainly built as a two-lane

road system, the path network is just not able to handle
the kinds of traffic volumes that exists today. This is
compounded by the fact that the network has a much
lower quality compared to international standards, which
means it does not really have any of the features that
make a road a safe and reliable means of transportation.
Among the most notable "missing features" of the road
network is the absence of anything that resembles a
proper drainage system. This leads to quite a few water
accumulation problems that can lead to cracks. Another
major issue is the lack of safety pathways for pedestrians
and people riding bikes.

A significant issue affecting the road network in Northern
Cyprus is the prevalence of extensive cracks, which vary
in size and visibility. While some are easily noticeable,
others are more subtle and more difficult to detect, posing
a hidden risks to road users particularly for international
students and tourists who are unfamiliar with the region.
Without timely intervention, these cracks worsen over
time, leading to severe damage such as potholes, which
degrade the overall quality of the road. This rapid
deterioration emphasizes the urgent need for effective
road management strategies to enhance infrastructure
and improve road safety.

Maintaining roads is essential for ensuring safety,
economic performance and environmental sustainability.
Well-maintained roads help not only prevent accidents
but also support environmentally friendly transportations
reducing vehicle operating costs and fuel consumption,
factors essential for economic growth. Addressing cracks
and resurfacing roads expands the lifespan of road
infrastructure, saving on long-term repair costs while
minimizing environmental impact and lowering vehicle
emissions. However, road cracks present significant
challenges. They compromise safety by disrupting traffic
flow and potentially damaging vehicles. Cracks also
allow water to seep into the road base, weakening the
structural integrity. Neglecting small cracks can lead to
larger, more expensive road repairs, ultimately increasing
maintenance costs and posing greater risks.

The role of timely crack detection in prolonging road
life and improving safety.

Timely crack detection is vital for prolonging the lifespan
of roads and ensuring the safety of all road users. Roads
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are subjected to various environmental and load-bearing
stresses, leading to crack formation caused by factors
such as temperature fluctuations, water infiltration, and
continuous traffic. If left unaddressed, small cracks can
expand and deteriorate further over time, resulting in
severe damage like potholes and patches. Early detection
allows for preventive renovation measures, such as
sealing or filling cracks, which can effectively halt
further deterioration.

From a safety perspective, timely crack detection
prevents hazardous conditions that could lead to
accidents. Visible cracks, specifically those allowed to
evolve into larger defects, pose significant risks to
drivers, cyclists, and pedestrians. For vehicles, cracks can
reduce tire grip, cause vibrations, and lead to loss of
control. Regular monitoring and early intervention
mitigate these dangers, ensuring roads remain smooth,
well-maintained, and safe for all users.

1.1. Problem Statement

1.1.1. Current Challenges in Manual Road Crack
Detection

Manual road crack detection faces significant challenges;
traditional methods rely on visual inspections conducted
by personnel, which are prone to delays and
inconsistencies due to human error and varying levels of
expertise (Yaun, Shi, & Li, 2024). Moreover, manual
detection often places inspectors in dangerous situations,
particularly when working near traffic. These limitations
underscore the importance of adopting automated and
reliable detection methods to ensure the timely and
accurate identification of road cracks, ultimately
enhancing road safety and maintenance efficiency (Yaun,
Shi, & Li, 2024).

Emerging methods, such as those leveraging deep
learning, have demonstrated potential for detecting
cracks at both sub-pixel and pixel levels. Early studies,
including those by Wang et al. and Yaun, Shi, and Li,
have shown promise, but current solutions remain
limited. Issues such as low contrast, insufficient datasets,
and inaccurate localization reduce the effectiveness of
these models (2024). Despite these challenges,
integrating conventional techniques with Al-based
methods presents a promising path forward to improve
the efficiency and accuracy of crack detection.

1.1.2. Research Motivation and Objectives

The motivation of wusing deep-learning in road
maintenance is lies in its potential to provide efficient,
accurate, and lead to proactive solutions. By analyzing
extensive road network data, deep learning can detect
cracks and other issues with far greater precision and
effectiveness than traditional human inspections. These
technologies enable both real- time monitoring and
predictive maintenance; allowing potential problems to

be identified and addressed before they escalate into
significant damage, such as potholes. This not only
extends the lifespan of urban infrastructure but also
enhances safety by equipping workers with critical
insights to avoid hazardous situations. In essence, deep
learning revolutionizes road maintenance management
by optimizing the handling of critical infrastructure and
conserving valuable resources. The objective of this
thesis is to develop a CNN-based system capable of
accurately segmenting pavement cracks.

1.2. Scope Of Study

1.2.1. Geographical Focus on North Cyprus

Northern Cyprus presents an ideal setting for studying
road crack detection due to its unique geographic and
climatic conditions. The region faces several
environmental  challenges, including significant
temperature fluctuations, torrential rains, and coastal
humidity, all contributing to road degradation.
Additionally, the rugged terrain and mountain ranges,
such as the Kyrenia Mountains, further complicate road
maintenance efforts. Implementing automatic crack
detection systems in the Northern Cyprus context offers
the potential to detect cracks promptly and accurately,
enhancing the safety and efficiency of the road network.
Moreover, such preventative road maintenance strategies
can significantly reduce repair costs and extend the
lifespan of the infrastructure, addressing critical
challenges faced by the region.

1.2.2. Use of CNN as the Primary Tool for
Segmentation.

Convolutional Neural Networks (CNN) have emerged as
a central algorithm for road crack detection, gaining
significant attention due to their remarkable accruable
accuracy and effectiveness in image recognition
(Elghaish, et al., 2021). Studies have shown that CNN
models like U-Net can detect cracks with higher accuracy
under diverse lighting and weather conditions. These
models are capable of processing large volumes of data
in short time, making them highly efficient. By
automating the detection process, CNNs eliminate the
need for manual inspections, which are inherently
subjective and labor intensive (Benedetto et al., 2023).
This automation not only enhances crack detection
accuracy but also significantly improves the efficiency of
road maintenance (Hacefendiolu & Basaa, 2022).

1.3. Significance of the Study

1.3.1. The Potential to Enhance Road Safety and
Reduce Maintenance Costs.

Artificial Intelligence driven road management offers the
potential of significantly enhance road safety while
reducing costs through the application of deep learning
and computer vision technologies. These advancements
help prevent road defects and eliminate the need for time
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constraining and error-prone manual inspections.
Automated detection enables more accurate and reliable
maintenance, ensuring roads remain in better condition.
Costs savings are maximized by extending the lifespan of
road infrastructure and reducing the frequency and scale
of repairs. Therefore, Al driven road maintenance not
only delivers improved road quality but also optimizes
resource allocation, resulting in substantial economic
benefits.

1.3.2. Contribution to Research in Al-based Road
Maintenance Systems.

Al research in road maintenance has made significant
progress, greatly improving the efficiency and quality of
semantic crack segmentation in road images. Deep
learning techniques can now detect and classify patchy
roads and potholes in real-time, contributing to the
extended lifespan of road infrastructure. Incorporating Al
into road maintenance also promotes sustainability by
enabling proactive and efficient management of
resources. This study does not only advance road
maintenance practices in North Cyprus but also enriches
existing literature by performing pavement crack
segmentation on a dataset specifically collected from
roads in the Northern Cyprus region.

Literature Review

Road crack segmentation with deep learning is a very hot
field and there is a lot of literature on this subject. The
section compared the work of some of these researchers
to identify the main problems and strengths of each. Road
infrastructure can no longer be underrated as an asset for
growth and social mobility. Pavement crack is unsafe,
and late maintenance can be expensive. Pavement crack
detection used to be an observation task done manually
with the naked eye, but the downside is that it’s slow,
subjective and error- prone (Lau, et al., 2020).

Faced with these constraints, engineers have turned to
computation to automate segmentation and detection of
pavement cracks. DL algorithms — Convolutional Neural
Networks (CNNs) in particular — are now the best
prospects for crack segmentation— better, faster and more
reliable (Lau, et al., 2020).

In response to these limitations, scientists have used
computation  for automated pavement crack
segmentation. Deep learning (DL) algorithms —
Convolutional Neural Networks (CNNs) in particular —
have become the perfect candidates for this purpose, with
great promise for making pavement crack detection more
accurate, efficient and objective (Lau, et al., 2020).

2.1. Key Deep Learning Architectures
The most popular deep learning architectures explored
for crack segmentation in roads are:

2.1.1. Fully Convolutional Networks

FCNs are another most used type for semantic
segmentation, and they dispense fully connected layers
with convolutional layers so that you can provide input
images of unlimited size. We have tested the crack
detection for FCNs of all backbones, VGG16, VGG19,
ResNet50.

2.1.2. SegNet

SegNet is also a 100% convolutional network just like U-
Net but with different decoder architecture. It has been
used for crack segmentation in pavements such as
concrete, asphalt, and bridge decks.

2.1.3.  Other Architectures:

Other architectures have also been investigated like
ResNet, DenseNet, PSPNet, DeepLabv3+ and GCN, all
having their own advantages and disadvantages of
accuracy, performance and complexity.

2.2. Datasets And Evaluation Metrics

A very important aspect of deep learning research is good
datasets for training and testing. Some open-source crack
detection datasets were created, each with its own
features and drawbacks. Some commonly used datasets
include:

2.2.1. CrackForest

Concrete crack data set with hand labeled ground truth.
2.2.2. AigleRN

A map of road crack images taken with street cameras.

2.2.3. Crack500
A map of road crack pictures from mobile phones.

2.2.4. TRIMMED
Collection of grayscale road crack images recorded with
high-resolution line-scan camera.

2.2.5. CFTD

Collection of RGB road cracks image captured with
consumer grade cameras.

To test the effectiveness of crack segmentation
algorithms, scientists often measure it with a mix of
different metrics such as precision, recall, F1-Score,
Intersection over Union (IoU).

2.3. Challenges And Contributions from Previous
Studies

Lau et al. (2020) introduced a U-Net CNN with a ResNet-
34 encoder through transfer learning to overcome the
inefficiencies of traditional crack detection methods like
thresholding, morphology, and edge detection. Their
model incorporated SCSE modules, progressive image
resizing, and varying learning rates to optimize training.
Tested on CFD and Crack500 datasets, the system
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achieved F1 scores of 96% and 73%, outperforming
larger models such as Split-Attention Network.

Zhang et al. (2019) designed a context-aware semantic
segmentation network that fused predictions from
overlapping image patches using cross-state and cross-
space constraints. This approach allowed pixel-wise
crack segmentation without retraining for different image
sizes. Applied to CFD, TRIMMD, and CFTD datasets, it
achieved state-of-the-art Boundary F1 scores while
processing images in 0.7 seconds each, demonstrating
efficiency, accuracy, and scalability for infrastructure
crack assessment across diverse conditions.

Gao et al. (2019) proposed a generative adversarial
network (GAN)-based approach for crack segmentation,
introducing U-GAN, CU-GAN, and FU-GAN, all using
modified U-Nets as generators. The models were trained
to distinguish real from fake crack images at the pixel
level. On AigleRN, CFD, and HTR datasets, they
outperformed existing methods in precision, though
recall rates declined on noisy or blurry images. The study
suggested advancing multi-scale convolution, feature
fusion, and attention mechanisms.

Pereira et al. (2019) addressed the inefficiency and
subjectivity of manual crack inspections by developing a
U-Net-based deep learning system for pavement and
pothole segmentation. Data were collected via
smartphones, and experiments showed the model
achieved 97% accuracy with mean mloU of 0.85. Despite
dataset limitations, U-Net performed exceptionally well
outside its original medical imaging domain, with future
improvements anticipated through larger, more varied
datasets and comparisons with newer architectures.

Wang et al. (2021) compared eleven CNN-based
semantic segmentation models, including FCN, PSPNet,
UPerNet, and DeepLabv3+, using ResNet, VGG, and
DenseNet backbones. Models were evaluated with ToU,
accuracy, precision, recall, and F1 score. DeepLabv3+
with ResNetl01 backbone performed best, particularly
with spatial pyramid pooling. Results confirmed CNNs’
superiority over heuristic methods, though noise and
dataset variations remained challenges. The authors
recommended DeepLabv3+ and GCN as robust solutions
for practical crack detection.

Li et al. (2022) highlighted deep learning advances,
showing CNNs like U-Net, HED, and SRN significantly
outperform image processing for crack segmentation.
They suggested integrating semantic segmentation with
edge detection to overcome each method’s weaknesses.
This combined framework improves accuracy in
identifying fine crack properties such as width and
length. Such detailed measurement offers practical
benefits for pavement maintenance and management,

demonstrating deep learning’s impact on safety and cost
efficiency in infrastructure monitoring.

Zhang et al. (2023) emphasized the shift from
handcrafted, image-processing methods toward CNN-
based automated crack detection. Models such as U-Net,
UperNet, ResUNet, and Pointrend produced strong
results even under noisy and poorly lit conditions,
proving more effective than earlier techniques. However,
segmentation of small cracks and distinction from
pavement features like stains or manhole covers
remained difficult. Their study reinforced CNNs’
strengths while acknowledging persistent challenges in
fine-scale crack identification and differentiation.

Lee et al. (2019) proposed the Semantic Crack
Segmentation Network (CSN) to address the limitations
of edge-detection filters and early CNNs, which were
restricted to patch-based methods and suffered from
noise. CSN improved accuracy by processing entire
images and avoiding sliding windows. To combat data
scarcity, they generated synthetic crack images using
Gaussian kernels and Brownian motion. Combining real
and synthetic data enhanced training, leading to stronger
segmentation performance in cluttered and complex
scenes.

Jia (2023) criticized the slowness and inaccuracy of
manual inspections and image processing for pavement
crack identification. They proposed an enhanced U-Net
with an Efficient Channel Attention (ECA) module in the
encoder and FCNHead decoder. This configuration
strengthened crack feature extraction and model
generalization. Their method proved particularly
effective in detecting small cracks under challenging
pavement conditions, offering a practical solution for
improving segmentation performance and reliability in
infrastructure maintenance and monitoring tasks.

Benedetto et al. (2023) tackled crack segmentation
challenges caused by noisy, obstructed, and overexposed
images. They proposed a modified U-Net incorporating a
ResNet50 encoder pre-trained on ImageNet, combined
with residual structures to improve learning. Their model
excelled in handling environmental obstructions and
achieved more precise crack detection, especially for
measuring crack width. Since crack width is essential for
severity determination, the proposed system significantly
enhanced the accuracy and usefulness of automated crack
assessment tools.

Panella et al. (2022) reviewed deep learning models,
focusing on CNNs like FCNs and U-Net for crack
segmentation. They analyzed the trade-off between
model complexity and loss of fine details due to pooling
layers. U-Net’s skip connections allow it to preserve
spatial information across layers, enhancing accuracy
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and efficiency. The review underscored U-Net’s
biologically inspired design and superior performance in
separating "what" and "where" information compared
with simpler CNNs, making it a reliable segmentation
architecture.

Al-Huda et al. (2023) introduced KTCAM-Net, a hybrid
deep learning model combining classification and
segmentation networks with Class Activation Maps
(CAM). KTCAM-Net employed hybrid loss functions,
crack boundary filtering, and overlapping fusion
algorithms, producing fine crack localization even under
noise and imbalance. Benchmark datasets confirmed its
superior performance, particularly for detecting thin
cracks. The model’s flexibility extended beyond cracks,
showing potential for broader surface defect detection in
inspection tasks, highlighting its innovative contribution
to segmentation methods.

Nguyen et al. (2021) proposed a two-stage CNN to
address noisy, low-resolution crack images. The first
stage used a five-layer CNN to localize cracks and
remove artifacts, while the second encoder-decoder
network segmented pixels in the localized regions. Tested
on the 2StagesCrack dataset, the method outperformed
single-stage models by handling low-quality images
effectively. The authors concluded that this two-stage
system was both accurate and computationally efficient
for real-world pavement crack segmentation.

Chen et al. (2020) presented Progressive Contextual
Segmentation Network (PCSN), built on SegNet with a
VGG16 encoder pre-trained on ImageNet. They applied
augmentation methods like flipping, rotation, and
contrast scaling to improve dataset diversity. Compared
to Mask R-CNN and FCN-8s, PCSN achieved superior
crack detection under difficult conditions, balancing
inference speed and segmentation quality. The study
showed how input image size impacted performance,
with larger inputs providing richer crack details at the
cost of slower processing.

Fang et al. (2020) categorized crack detection into image
processing, classical machine learning, and deep
learning. They noted that while thresholding and edge
detection are noise-sensitive, machine learning methods
like SVMs lacked robustness. CNNs achieved major
advances, though  challenges included  high
computational costs, noisy faint cracks, and difficulty
maintaining both global and local context. Their review
underscored the advantages of deep learning but
highlighted the ongoing need for efficiency
improvements and better contextual data integration.

Yu et al. (2021) compared one-stage and two-stage deep
learning detection models for crack detection. Two-stage
models like Faster R-CNN achieved high accuracy by

using region proposal networks, while one-stage models
such as YOLO and SSD traded some accuracy for speed,
making them more suitable for industry. Both approaches
struggled when applied to UAV-acquired images, which
are much larger than standard datasets like ImageNet or
VOC, revealing limitations in scalability for field
conditions.

Ali et al. (2021) examined CNNs for automated, real-
time crack detection in buildings, highlighting their
advantages over costly and dangerous manual
inspections. CNNs could classify images, localize cracks
with bounding boxes, and perform pixel-level
segmentation. However, segmentation accuracy was
hampered by class imbalance, inconsistent lighting, and
obstacles in images, which biased networks against crack
pixels. Their study emphasized these practical challenges
while confirming CNNs’ effectiveness for crack
detection tasks in diverse real-world applications.

Yan et al. (2022) addressed the difficulty of detecting
cracks in low-light conditions by proposing CycleADC-
Net. The system first employed CycleGAN to translate
dim images into brighter ones without altering crack
structure, then applied a dual-channel encoder-decoder
with attention to merge global and local signals. This
approach improved detection accuracy in poorly lit
scenarios, enabling robust crack segmentation where
conventional deep learning models typically fail due to
lighting limitations.

Xu and Liu (2022) solved the challenge of limited
training data by employing DCGAN to generate
synthetic pavement crack images. Expanding the dataset
from 1,608 to 6,000 images improved CNN classification
accuracy from 80.75% to 91.61% while reducing class
imbalance. Their findings demonstrated the value of
generative models for creating realistic training data,
enhancing both model performance and dataset diversity
in pavement crack detection applications, particularly
when real-world samples are scarce.

Chen et al. created a dataset of 10,000 manually labeled
pavement and bridge crack images to address the lack of
public datasets. Using SegNet with a VGG16 encoder
and data augmentation, they developed PCSN, which
achieved mean average precision of 83%, outperforming
Mask R-CNN (42%) and FCN-8s (67%). Larger input
sizes improved segmentation performance, though
smaller inputs offered faster inference. Their work
demonstrated the importance of dataset quality and
architecture design for reliable crack detection.

2.4. Addressing Data Limitations

2.4.1. Data Augmentation

Most research works use data augmentation to scale the
size¢ and number of training datasets, decreasing
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overfitting, and achieving model generalization. Certain
common augmentation tricks include rotation, flip,
scaling, and cropping images.

2.4.2. Cross-Dataset Testing

To test models for their adaptation to different imaging
scenarios and crack types, some researchers have run
cross-dataset testing — training models on one dataset
and running them against another.

2.5. Handling Complex Noise and Background

2.5.1. Modules for Attention

Attention modules such as Convolutional Block
Attention Module (CBAM) or Efficient Channel
Attention module (ECA)) are added to CNN
architectures for feature extraction and attention to
specific image areas. These modules are used to help the
model deconstruct cracks from noise and other non-
relevant features.

2.5.2. Residual Structures

Residual structures like ResNet have been demonstrated
to improve performance of deep learning models by
allowing training of deeper networks. Adding skip
connections that skip one or more layers is how residual
structures solve the vanishing gradient problem and make
the information flow throughout the network.

2.6. Computational Efficiency

2.6.1. Improving Network Design

Network engineers are constantly looking for new ways
to tweak network design, so it runs faster and with
accuracy. Such as searching for lightweight architectures,
delimiting parameters, and learning from the effective
training strategies.

Although pavement crack segmentation is making great
progress, there are still obstacles, and more research
needs to be done:

2.6.2. More Capable and Generalizable Models
Typical models can’t handle the complexities of real-
world scenarios like lighting conditions, shadow
interference, water stains, crack types, etc. The research
needs to be more robust and generalizable models that
can manage these problems well.

2.6.3. Crack Width Estimation

Most research is centered around crack segmentation, but
the crack width estimate is important for pavement
cleaning and repair. Our next studies should try to build
crack width estimation into the segmentation equations.
2.6.4. Instant Crack Detection

The real-time crack detection is required in applications
like autonomous road monitoring and maintenance
planning. The studies should keep developing
computationally efficient models and algorithms that can
perform in real time on resource limited machines.

Deep learning has taken the pavement crack
segmentation process to a whole new level, with promise
for automating pavement inspection and maintenance.
Various CNN architectures and methods have been able
to show promising results but there’s more research that
needs to be done on robustness, generalization, crack
width  estimation, and real-time performance.
Researchers noted that in future research, deep learning
for pavement crack segmentation will be ever more
integral to road safety and resilience.

Three Background

3.1. Computer Vision

Computer vision is the area of artificial intelligence (Al)
that lets computers and systems process visual data in the
world like digital pictures and videos. Through ingesting
and visualizing these data, computer vision systems can
do the things humans do most of the time, such as object
detection, image classification and segmentation tasks.
Computer vision is as old as it gets: research began in the
1960s, to help machines see even simple pictures. The
digital image, computational capability and algorithmic
development that has followed over the decades have led
to the advancement of the industry. Notably, deep
learning and neural networks have enabled significantly
higher image recognition and detection.

3.1.1. Core Techniques and Technologies
Today’s computer vision is dependent on some important
technologies:

e Machine Learning & Deep Learning: These are
methods that can learn from millions of images
and increase patterns and predictions.

e Convolutional Neural Networks (CNNs): CNNs
are neural networks trained specifically on
pixels and so, are ideal for image classification.

e Computer vision has a huge number of
applications in many different sectors:

e Healthcare: Performs medical imaging for
diseases and abnormalities (X-ray, MRI to
diagnose).

e Auto industry: Creating safe perception and
control of the environment with object
recognition  and  lane-recognition  for
autonomous cars.

e  Manufacturing: Supporting automatic
inspection and quality control, where product
defects are found on production lines.

e Safety and Surveillance: Creating surveillance
with face detection and activity detection to
ensure security and safety.

e  Current research in computer vision is about to
make it more accurate, more efficient, and more
applicable in various fields. Combining
computer vision with other Al capabilities
including natural language processing and
robotics, there are more opportunities for
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creative and usable solutions across many
industries.

3.2. Machine Learning and Deep Learning

Machine learning (ML) is a subset of artificial
intelligence (AI) that helps systems learn from data, find
patterns, and make decisions without any human
involvement. ~ With  algorithms and  statistical
representations, ML makes it possible for computers to
perform tasks that cannot be programmed for each action
in the program.

Deep learning on the other hand is a branch of machine
learning (ML) in artificial intelligence (Al) based on
algorithms modelled after the brain’s structure and
activity — artificial neural networks. These algorithms
search for patterns and make choices based on layers of
data from which more advanced features are extracted.

In terms of the theory, deep learning has been around
since the 1940s, when neural network models were first
built. Researchers such as Frank Rosenblatt first
developed the perceptron, an early neural network
architecture capable of rudimentary pattern recognition,
in the 1950s and *60s. But computational restrictions and
theoretical problems held up progress.

These regained momentum in the 1980s when the
backpropagation algorithm was developed to train multi-
layer neural networks better. But even with all these
improvements, it wasn’t until the 2000s, when the
computing power became more powerful and the
availability of more data, that deep learning really started
making big gains.

3.3. Convolutional Neural Networks

CNNs are a type of deep learning model that works on
data with a grid structure like images. They have been the
key technology of computer vision and enables
computers to perform tasks such as image and video
recognition, object recognition and segmentation. In
2012, the field made its breakthrough when AlexNet by
Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton
won the ImageNet Large Scale Visual Recognition
Challenge. AlexNet’s accomplishment demonstrated the
power of CNN in tackling advanced image classification
problems (Draelos, 2019).

3.3.1. Core Components and Architecture
An ordinary CNN architecture consists of the following
key players:

e Convolutional Layers: These layers perform
convolutional functions on the input, thus
identifying spatial hierarchies and local trends
in the data.

e Activation Functions: Non-linear functions
such as ReLU (Rectified Linear Unit) are used
to introduce non-linearity to the model and
allow it to learn complex patterns.

e Pooling Layers: Pooling layers perform down-
sampling to reduce the dimension of the data
and make the representations more tractable and
stable with slight translations.

e Fully Connected Layers: After a few
convolutional/pooling layers, high level neural
network reasoning occurs through fully
connected layers that links each neuron of a
layer to each neuron of a subsequent layer.

e CNNs are used in a variety of applications,
some of them include:

= Image & Video Recognition: Widely
applied in face recognition software,
object detection and video analysis.
=  Medical Imaging: CNNs are used to
diagnose illnesses based on medical
images (MRIs, CT scans, X-rays etc.).
= Autonomous Vehicles: They make
self-driving cars to see and interpret
the world by analyzing images from
cameras.
e Natural Language Processing: CNNs are used
for text classification (sentiment detection,
spam detection).

3.4. Semantic Segmentation of Pavement Cracks

This is the task of categorizing every pixel in an image to
correctly determine and mark which regions of an image
is a crack. This is necessary for the maintenance of
infrastructure and transportation safety.

Pavement crack detection has always been done
manually with some simple image processing like edge
detection and thresholding. These methods were
promising as early solutions but had low accuracy,
particularly in multi-light, multi-noise environments. The
advent of deep learning and the improvement of
computation power has ushered a more efficient way of
detecting cracks in images using more advanced
techniques such as U- Net.

3.5. U-Net Architecture

U-Net first published in "U-Net: Convolutional
Networks for Biomedical Image Segmentation" by
Ronneberger et al, (2015) is a special kind of
convolutional neural network (CNN) to perform image
segmentation efficiently. It has become an ideal
architecture for image segmentation tasks, which are to
find each pixel in a picture and classify it into a single
category such as crack or no-crack. U-Net is a pipeline
with two main sections: a decoder and an encoder.
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3.5.1. Encoder

The encoder analyses the image and extracts important
features, creating a condensed summary of the visual
data.

3.5.2. Decoder

The decoder takes the condensed information from the
encoder and gradually reconstructs the image but with a
focus on highlighting those specific features related to
cracks.

3.5.3. Skip Connections

This is what makes the U-net very effective, it links the
encoder and the decoder stages. These connections allow
the network to retain both the fine grain details from the
original image and the high-level understanding gained
by the encoder. It is combining the big picture and those
tiny details.

3.5.4. Convolutional Layers
Responsible for extracting features from the image like
edges, textures and patterns

3.5.5. Activation function

Determines whether a neuron should fire or not. So, it is
not just about detecting a feature but about deciding how
important that feature in the context of crack detection

3.5.6. Pooling layers

Responsible for down sampling the image, making
computations more manageable while retaining the most
important information. It is like creating a more efficient
summary of the image data without losing those crucial
details.

3.5.7. Dropout

This helps prevent a common problem in machine
learning called overfitting. Overfitting is like when a
student memorizes the answers for a test but cannot apply
that knowledge to new problems. So, dropout layers help
the model generalize better to accurately identify cracks
in any image. Even with the best architecture, a model
needs guidance to learn effectively, that is where the loss
function and optimizer comes into play.

3.5.8. Loss Function

Think of the loss function as coach that yells at a team
when they mess a play. It measures how far off the
model's predictions are from the actual cracks in the
images, guiding the model to improve its performance.

3.5.9. Optimizer

Think of the optimizer as the coach constantly adjusting
strategies and techniques to minimize those mistakes, in
this case to minimize the loss.

3.5.10. Intersection Over Union (IoU)

The intersection over union is how we know the model
actually works. It measures how well the models
predicted crack overlap with the actual crack in the
image. Perfect score of 1 means the model’s prediction
perfectly matches the real crack. The model developed in
this thesis achieves some seriously impressive IoU scores
demonstrating its accuracy in identifying and delineating
those cracks.

l,:]lg)(;g output
5l ol segmentation
map
’-»{-;o-'
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] Y - § max pool 2x2
& ¥ ; 4 up-conv 2x2

% M — = conv 1x1

Figure 3.1: A standardized U-Net architecture, which
lays a core premise to this thesis

Source: (https://Imb.informatik.uni-
freiburg.de/people/ronneber/u-net/, 2015)

Methodology

Developing a deep learning-based solution for the
automatic segmentation of cracks in pavement images
serves as the central focus of this study. Framed as a
binary image segmentation task, the process involves
classifying each pixel in an input image as either part of
a crack or a non-crack region.

This chapter outlines the methodology employed to
achieve accurate segmentation of pavement cracks using
deep learning. Key steps include data preprocessing,
normalization, model training, validation, testing, and
evaluation. The aim is to create and train a robust model
that delivers precise and reliable results, paving the way
for efficient and automated road maintenance solutions.

4.1. Dataset

4.1.1. Data Description

The dataset consists of annotated images designed for
pavement crack detection and classification. It contains
893 images, each labeled with polygonal annotations for
various types of pavement distresses. The annotations
which were done by an expert include geometric
coordinates for the regions of interest, enabling precise
identification of defects. The dataset is organized and
timestamped, indicating updates and task details, making
it suitable for training and validating computer vision

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.



models in infrastructure inspection. The dataset contains
the following classes: Fatigue cracking, Block cracking,
Edge cracking, Wheel path longitudinal cracking, non-
wheel path longitudinal cracking, Transverse cracking,
Patch, Potholes, Manholes, Bumper removal, Bleeding,
Raveling. However, since this this study performs binary
segmentation, therefore all the twelve classes were
regarded as cracks and the background as none crack,
resulting into two classes.

4.1.2. Data Preprocessing

Pavement crack images and their corresponding ground
truth were generated. The dataset is divided into training,
validation, and test subsets for model training and
evaluation. The training is conducted for various sets of
parameters with 90% of the images for training and
validation (10% of the training dataset used for
validation), and 10% used for testing.

Images and masks were resized to a fixed resolution to
standardize the input for the U-net architecture. For
grayscale images, a channel dimension was added to
ensure compatibility with the network architecture.
Masks are converted to binary (0 or 1) and stored as
single-channel images where 0 indicates none crack and
1 crack regions.

4.2. Model Design

A U-Net architecture was chosen for its effectiveness in
semantic  segmentation  tasks, particularly  for
infrastructure images where fine-grained details are
essential. Custom layers were defined to allow the model
to learn the features in the dataset from the ground up
without any transfer learning. This resulted to a more
simplified and efficient model. Below is a description of
the layers in the developed model. The U-Net model
consists of the following detailed layers and components:

4.2.1. Input and Scaling

The input layer accepts images with dimensions
(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS). A
Lambda layer normalizes pixel values by dividing every
pixel value by 255.0 to scale them between 0 and 1.

4.2.2. Contraction Path

This path progressively down samples the input while
extracting features using convolutional and pooling
operations:

e Layer 1: Two convolutional layers with 64
filters of size 3x3, followed by a dropout rate
of 0.1. Padding is set to same, maintaining the
spatial dimensions.

e  MaxPooling: A pooling operation with a 2x2
window reduces the spatial dimensions by half.

e Layer 2: Two convolutional layers with 128
filters of size 3x3, followed by dropout rate of
0.2.

e MaxPooling: A 2x2 pooling layer reduces
dimensions further.

e Layer 3: Two convolutional layers with 256
filters of size 3x3, followed by dropout of rate
0.3.

e MaxPooling: A 2x2 pooling layer reduces
dimensions again.

4.2.3. Bottleneck

This section represents the deepest part of the network,
capturing high-level abstract features: Two
convolutional layers with 512 filters of size 3x3,
followed by a dropout layer rate 0.4.

4.2.4. Expansive Path

This path upsamples the feature maps and combines them
with corresponding feature maps from the contraction
path via skip connections to recover spatial information

e Layer 5: A transposed convolution layer
upsamples the feature maps, halving the number
of filters to 256. The output is concatenated with
features from Layer 3. Two convolutional layers
with 256 filters 3x3 refine the combined
features, with dropout of rate 0.3.

e Layer 6: Another transposed convolution
upsamples to 128 filters. The output is
concatenated with Layer 2. Two convolutional
layers with 128 filters 3x3 follow, with dropout
rate 0.2.

e Layer 7: A final transposed convolution
upsamples to 64 filters. The output is
concatenated with Layer 1. Two convolutional
layers with 64 filters 3x3 refine the features,
with dropout of rate 0.1.

4.2.5. Output Layer

A final convolutional layer with 1 filter of size 1x1 and a
sigmoid activation function produces a single-channel
output, representing the pixel-wise probability map for
segmentation. Overall, the network maintains critical
spatial information by concatenating skip connections
from the contraction path to the expansive path,
effectively leveraging both low-level details and high-
level features. The number of filters doubles in the down
sampling path to enhance feature representation and
halves symmetrically in the up sampling path to match
the input dimensions.

4.2.6. Activation Functions

In an artificial neural neuron, an activation function
decides whether to fire a neuron or not. In other words,
is my output equal to 1 or 0. One if it is activated and
zero if it is not activated in the case of a binary problem.
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Figure 4.1: Representation of a simple neural network
with one node

Source : (https://www.mdpi.com/2071-
1050/16/23/10756, 2024)

4.2.7. Sigmoid Activation Function

The output layer uses a single convolution operation with
a sigmoid activation function to generate pixel-wise
probabilities for the presence of cracks. The sigmoid
function is a mathematical function commonly used in
machine learning and neural networks. It maps any input
value to a value between 0 and 1, making it ideal for

binary classification problems or tasks where
probabilities are required.

Lo sigmoid
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Figure 4.2: Sigmoid function
Source: (https://www.quora.com/What-is-the-ReLU-
layer-in-CNN, 2020)

4.2.8. ReLU Activation Function
ReLU is the most used activation function in the
convolutional layer of a convolutional neural network

especially for image classification, objection and
segmentation. The ReLU activation function is expressed
mathematically below. If z is greater than 0, the output is
z else if z is less than or equal to 0, the output is 0.

Figure 2.3: ReLU Activation Function
Source:  (https://www.quora.com/What-is-the-ReLU-layer-
in-CNN, 2020)

4.2.9. Loss Function

Also known as the cost function or error function quantifies
the error between output of the algorithm and the given target
value. Binary cross-entropy is used as the primary loss
function for segmentation tasks.

4.2.10. Optimizer

An optimizer updates the model in response to the output of
the loss function. Optimizers assist in minimizing the loss
function. The Adam optimizer was used due to its
effectiveness, and it is popularly used in the convolutional
neural networks. Adam stands for Adaptive moment
estimation. According to Kingma and Ba (2015) Adam is
computationally efficient with little memory requirements
and typically require little to no tuning.

4.3. Experimental Setup

The study involved training, validating, testing and evaluating
the U-net model using a diverse dataset of pavement images
containing various crack types and severities. The dataset was
divided into three subsets: training, validation, and testing.
The training subset was used to optimize the model's
parameters, while the validation subset was employed to
monitor the training process and prevent overfitting. The
testing subset, consisting of unseen images, was used to test
the model's performance on new data. Various
hyperparameters were investigated to optimize the U-net
model's performance, including:

4.3.1. Image Size
Experiments were conducted with different image dimensions
(width and height), including 128 and 256 pixels.

4.3.2. Batch Size
The number of images processed in each training iteration
was varied, exploring batch sizes of 8, 16, 32, and 64.

4.3.3. Number of Filters
The number of convolutional filters in the U-net architecture
was adjusted to explore the impact on performance.

4.3.4. Bottleneck Dropout
An increase in dropout of 0.5 was introduced at the bottleneck
of the U-net architecture to explore its impact on mitigate
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overfitting. Overfitting randomly drop out a proportion of
neurons during training.
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Figure 4.4: Flowchart of Methodology

Below is the pseudocode for the flowchart of the methodology
shown above START
#Preprocess images

v Generate masks

v Resize images and masks

v Split dataset # Normalize dataset
v' Scale pixels values between 0 and 1 #Train and
validate the Model
ForI=1: EPOCHS
Forj=1: BATCHES
v" Train the model
v'  alidate the model End
End
# Test the model
Fori=1: PREDICTIONS
If preds > 0.5
Crack

End

Else

No-crack

# Evaluate the model

COMPARE Ground Truth Masks vs.
DISPLAY RESULT

END

Predicted Masks

4.4. Evaluation Metrics

4.4.1. Confusion Matrix

A Confusion Matrix is a table summarizing the frequency of
predicted vs. actual pixels for a given set of data. This is the
most common and concise way to evaluate performance and
compare models against one another. A confusion matrix can
be used to derive several types of model performance metrics,
including accuracy, precision and recall.

PREDICTED CLASS
0 1
True !\Iegative False’ Positive
ACTUAL o ‘FP)
CLASS

False Negative True Positive
1 (FN) (TP)

Figure 4.5: Confusion Matrix

| TP + TN »
CCUracY = TP L TN + FP + FN '

Accuracy helps answer the question, of all predictions, what
percentage were correct? However, accuracy alone is not
enough to properly evaluate a classification model when one
class is rare, a model may have high accuracy but a useless
model. Precision and recall add context and may be superior
to accuracy in some cases. This is true for many segmentation
and classification problems, where the focus is on predicting
one class correctly than the other. For example, in pavement
crack segmentation, the goal is to segment cracks. A very
small percentage of regions on an image is actually going to
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be cracks. So, the modelling effort is going to be on
segmenting cracks, and not on regions with no cracks.
Precision and recall are metrics that focus on how well the
model predicts the positive class, that is cracks in this case.

4.4.3. Precision
Precision answers the question, of all predicted positives
(crack pixels), what percentage were correct?

TP
TP+ FP

Precision =

4.4.4. Recall

Recall answers the question, of all actual positives (crack
pixels), what percentage were predicted correctly. Recall is an
important metric when we are more concern with False
Negatives which is the case in the context of pavement crack
segmentation.

TP
TP+ FN

Precision =

4.4.5. F1 Score

F1 score measures the harmonic mean of precision and recall.
In mathematics the harmonic mean, which is favored for
means of ratios as it measures an equal weight on both ratios.
It will thus be lower than the standard arithmetic mean.

Precision * recall
4.4

Precision = 2 —
Precision + recall

4.4.6. Intersection over Union (IoU)

This metric compares the area of overlap between the
predicted masks and the actual or ground truth masks to the
total area of the two masks combined. The IoU ranges from
0 (no overlap) to 1 (perfect overlap).

Area of Overlap
loU =

Area of Union

Figure 4.6: Intersection over Union
Source:(https://wiki.cloudfactory.com/docs/mp-
wiki/metrics/iou-intersection-over- union, 2024)

4.5. Implementation Details
Tools, frameworks, and hardware/software specifications.

The following tools and frameworks were used to develop and
train the model:

e TensorFlow and keras

e Visual studio code using the Jupiter notebook
extension to create notebooks

e Python and other python libraries

The model was trained on a PC with an Nvidia GPU with the
following hardware specifications:

e 16 GBRAM

e 16 GB NVIDIA GeForce RTX 4060 GPU

e 512GBSS

Results and discussion
5.1. Results

The performance of the U-Net model was assessed using
various metrics, including accuracy, precision, recall, F-score,
and Intersection over Union (IoU) score. The U-net model
demonstrated promising results in segmenting pavement
cracks. Table 1 present the detailed results for the testing
phase. This table provide a comprehensive overview of the
model's performance across different experiments, allowing
for a comparative analysis of the impact of various
hyperparameter configurations

Table 5.1: Testing Results

Exp |Accurac [Precisio [Reca [F1Scor IEpoc IBatch ToU
n 1l e h size  |score
1 98.68 82.97 [76.88(79.81 [56 18 66.40
2 98.63 82.55 [75.67(718.96 |52 32 65.24
3 98.55 85.42 6894 (76.30 (62 |64 61.68
4 98.63 82.53 [75.74(7899 [34 B 65.27
5 98.61 84.88 [71.93(77.87 |56 32 63.77
6(bn do =0.5) [98.65 82.29 [76.80(79.45 |58 |16 64.42
7(W&H = 256) [98.66 85.57 [71237(1842 25 B 64.50
8 98.67 81.47 [78.341(79.87 U8 |16 66.49
9 (32 filters 98.54 80.52  [75231(77.79 |61 32 63.65
layer)
10 (16 filters  98.67 83.33 [75.87(7943 [36 88 65.88
layer)
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Table 5.2: Confusion Matrix

Experiment 1

393528 2191

3209 10672
Experiment 2

393499 2220

3377 10504
Experiment 3

394086 1633

4312 9569

Experiment 4

393493 2226

3368 10313
Experiment S

393517 2202

3799 10082
[Experiment 6

393425 2294

3220 10661
Experiment 7

393493 2226

3368 10313
Experiment 8

1573225 9859

11982 43334
Experiment 9

393193 2526

3438 10443
Experiment 10

1574690 3394
13346 41970
5.1.1. Results From Literature

Below is a list of papers taken from previous studies. The
results of the evaluation metrics from these studies have been
shown in table

1.

2.

Generative Adversarial Networks for Road Crack
Image Segmentation

Deep Learning-Based Semantic Segmentation
Methods for Pavement Cracks

U-Net-Based CNN Architecture for Road Crack
Segmentation

Semi-supervised semantic segmentation network for
surface crack detection

Hybrid deep learning pavement cracks semantic
segmentation

Two-stage convolutional neural network for road
crack detection and segmentation

Table 5.3: Results from previous studies

Title |Accuracy [Precision [Recall |F1-score

1 IN/A 75.06 55.19 (60.48

2 76.24 52.73 75.95 (80.89

3 IN/A 85.34 68.13 [75.77

4 IN/A 82.39 56.88 [67.30

5 IN/A 64.10 64.10 [62.40

6 IN/A 77.00 75.00 [72.00
5.1.2. Visualization of Segmentation Results

Predictions on random samples from the training, validation,
and test datasets were visualized. This included:

Input image: This is an unseen original image from
the test dataset

Ground truth mask: This is the mask generated for
the original image.

Predicted mask: This is the image with only the
crack regions painted by the U-Net model.

The visualization corroborated the results from the evaluation
metrics which indicated high precision and recall, affirming
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the model's capability to segment pavement cracks accurately. 5.1.3. Thresholding

By employing robust preprocessing, custom metrics, and  The sigmoid output of the model was thresholded at 0.5 to
extensive visualization, the workflow ensures reliable  convert probabilities into binary predictions.

segmentation results suitable for practical deployment.

5.1.4. Inference Results
The trained model was tested on a separate test set. A random test image is displayed with its corresponding ground truth and
predicted masks to verify the correctness of the predictions.

Input Image (Test) Ground Truth (Test) Prediction (Test)

Figure 5.1: Screenshot of inference result

To clearly visualize which regions of the image the model has been able to clearly segment as crack and those that the model
missed, the ground truth mask coloured in green and predicted mask coloured in red has been overlayed over each other. When
red and green are combined, the resulting color is yellow. Therefore, the regions coloured yellow indicates the pixels that the
model correctly predicted as cracks. Secondly, the regions coloured red indicate pixels that the model wrongly predicted as
cracks and finally the regions coloured green are those cack pixels could not pick up.

Input Image (Test)

Figure 5.2: Overlayed Screenshot of Inference Result 1

The results inferred that the U-Net was able to learn the features and as a result could segment cracks in any image that contains
crack regions. Below are additional inference screenshots.
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Input Image (Test) Overlay (Ground Truth in Green, Prediction in Red)

Figure 5.3: Overlayed Screenshot of Inference Result 2

Input Image (Test) Overlay (Ground Truth in Green, Prediction in Red)

Figure 5.4: Overlayed Screenshot of Inference Result 3

Input Image (Test) Overlay (Ground Truth in Green, Prediction in Red)

Figure 5.5: Overlayed Screenshot of Inference Result 4
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Input Image (Test)

Overlay (Ground Truth in Green, Prediction in Red)

Figure 5.6: Overlayed Screenshot of Inference Result 5

5.2. Discussion

5.2.1. Analysis of Testing Results

Table 3 presents the results on the testing set, providing the
most crucial evaluation of the model's performance on unseen
data. Similar to the validation results, the testing accuracy
remained consistently high, ranging from 98.51 to 98.67. The
precision, recall, F-score, and IoU scores demonstrated
variations based on the hyperparameters. The model with a
batch size of 16 and image dimensions of 256 x 256 achieved
the highest IoU score of 66.49, signifying its effectiveness in
accurately segmenting cracks on new data.

5.2.2. Impact of Hyperparameters

The experimental results highlight the influence of
hyperparameters on the U-net model's performance. The
choice of image size, batch size, number of filters, and
bottleneck dropout all contributed to variations in the
evaluation metrics.

Key observations regarding the impact of hyperparameters
include:

e Image size: Increasing the image size from 128 x 128
to 256 x 256 generally resulted in improved
performance, particularly in terms of IoU score.
Larger images provide more contextual information,
allowing the model to better capture crack features
and boundaries.

e Batch size: The optimal batch size varied depending
on other hyperparameters. In some cases, smaller
batch sizes led to better results, potentially due to
improved generalization. However, in other cases,
larger batch sizes were beneficial.

e  Number of filters: Adding more filters to the U-net
architecture generally improved performance,
particularly the IoU score. Increasing the number of
filters enhances the model's capacity to learn
complex features, leading to more accurate
segmentation.

e Bottleneck dropout: Introducing a dropout layer at
the bottleneck of the U-net architecture improved
performance in some experiments, suggesting its
effectiveness in mitigating overfitting and enhancing
generalization.

The findings of this study demonstrate the effectiveness of the
U-net architecture for automated pavement crack
segmentation. The model achieved high accuracy and
promising IoU scores on both the validation and testing sets,
indicating its ability to generalize to unseen data. The choice
of hyperparameters played a significant role in optimizing
performance, emphasizing the

importance of careful hyperparameter tuning. The results
suggest that U-net based crack segmentation systems have the
potential to significantly improve road maintenance and
safety inspections by enabling automated, efficient, and
accurate crack detection.

Conclusion

In conclusion, this thesis highlights the transformative
potential of deep learning, particularly through the U- Net
architecture, in addressing the pressing challenges of road
maintenance. The model developed showed impressive
evaluation and inference results in segmenting pavement
cracks. The study validates the effectiveness of U-Net in
learning complex patterns and accurately distinguishing
between crack and non- crack pixels. This capability
underscores the model’s utility in tackling real-world
infrastructure issues. The research further emphasizes the
critical role of hyperparameter tuning in optimizing model
performance. Key factors such as image size, batch size, the
number of filters, and dropout layers significantly influence
the accuracy and efficiency of crack segmentation, with larger
image sizes (256x256) yielding notably better results. This
insight provides valuable guidance for future advancements
in similar applications of deep learning.

Beyond its technical contributions, the study demonstrates the
immense potential of automated crack detection systems to
revolutionize road maintenance practices. By reducing
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reliance on time-consuming, error-prone manual inspections,
these systems enhance efficiency, improve safety, and
minimize risks to inspection personnel. This aligns with
broader goals of modernizing infrastructure management and
ensuring sustainable road safety solutions. This work also
makes a meaningful contribution to the growing body of
research on Al-driven infrastructure maintenance. It
showcases the application of deep learning techniques to a
critical problem—segmentation of pavement cracks—and
lays a strong foundation for future studies. The findings are
particularly relevant for regions like Northern Cyprus, where
high traffic volumes and limited infrastructure exacerbate
road maintenance challenges.

Ultimately, this thesis not only confirms the feasibility and
efficiency of U-Net-based crack segmentation but also opens
pathways for further exploration. Future research could focus
on extending the model's capabilities to estimate crack
dimensions, enable real-time detection, and enhance
robustness under diverse environmental conditions. These
advancements hold the promise of making automated road
maintenance systems even more practical, scalable, and
impactful in addressing global infrastructure needs.
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