https://doi.org/10.65025/ICAIC251000

Exploring the effect of ai integration on collaborative practices and decision making in
construction project management. A literature review.

Bamidele Charles Olaiya
Kampala International University, Western
Campus, Ishaka-Uganda
bmolaiya@kiu.ac.ug

Abstract

Multimodal artificial intelligence (Al) is reshaping the
software development landscape by extending coding
assistance beyond text-based prompts into voice,
image, video, and design driven workflows. This study
investigates how multimodal Al is influencing current
development practices, the challenges it introduces, and
what trends can be expected between 2025 and 2030.
Using a mixed-method approach that combines
literature synthesis with empirical analysis of 3,998
Stack Overflow posts (covering 3,297 questions and
701 answers), we examine developer sentiment, tool
adoption, and emerging themes in community
discourse. The findings indicate that while 67% of posts
express positive sentiment, developers are increasingly
focused on issues of trust, integration, and control,
especially when Al systems interact with sensitive files
or introduce unexpected behaviors. Tools such as
ChatGPT and GitHub Copilot dominate discussions,
reflecting both their versatility and integration
challenges, while smaller tools like Claude, Amazon
CodeWhisperer, and Figma to Code receive highly
positive but niche attention. Looking ahead, multimodal
Al is expected to play a central role in automated UI/UX
generation, debugging, architecture design, and
DevOps workflows, though ethical concerns, workforce
disruptions, and intellectual property risks remain
unresolved. This study contributes to ongoing debates
by highlighting both the opportunities and risks of
multimodal Al, and by outlining practical steps
developers and organizations can take to prepare for an
Al-driven software engineering future.

Keywords: Multimodal Artificial Intelligence;
Software Development; Al-assisted Coding Tools;
Developer Adoption; Sentiment Analysis; Ethical and
Security Challenges.

1. Introduction

The rapid rise of artificial intelligence in software
engineering has transitioned from text-based code
completion toward multimodal systems that integrate
text, images, audio, and video. Unlike early coding

Olawunmi Azeezat Akanbi
Bahcesehir Cyprus University, Cyprus.
oakanbi@baucyprus.edu.tr

assistants such as GitHub Copilot and Amazon
CodeWhisperer, modern multimodal Al tools now

support screenshot-to-code generation, voice-driven
refactoring, and visual debugging, enabling richer
interactions across the software development lifecycle
(George & Harendra, 2024). This transformation is
accelerating industry adoption, with the recent 2024
Stack Overflow Developer Survey showed 62% of
developers were using Al tools daily, up from 44% in
2023, with 76% expecting to use them this year
(StackOverflow, 2024), and market forecasts projecting
multimodal Al growth at a CAGR of 34.4% to reach
$10.89 billion by 2030 (Grand View Research, 2024).
Multimodal Al is already altering the nature of software
engineering work. It enables automated UI generation
from design mockups (Dave et al., 2021; Durgam et al.,
2025), architecture synthesis from diagrams
(Ramachandran, 2025), and bug detection through
combined log, code, and screenshot analysis (Singh &
Sudha, 2024). Furthermore, emerging paradigms such
as collaborative agents enhance pair programming by
integrating seamlessly into IDEs and communication
platforms (Ma et al., 2024). These advances signal a
shift toward Al-augmented development ecosystems,
where human and Al collaborate continuously across
design, coding, testing, and deployment.

However, the emergence of multimodal Al also raises
critical challenges and risks. Developers report
frustrations with inconsistent IDE support (Preethi et
al., 2024), ethical concerns around intellectual property
(Lalanda & Roig, 2025), and security risks tied to
unsafe code generation (Espinha Gasiba, 2024).
Beyond technical challenges, Al adoption disrupts
workforce roles by automating repetitive tasks while
creating demand for prompt engineering, architecture,
and Al-human collaboration skills (Kinder et al., 2024).
The literature also highlights persistent issues of bias,
data privacy, and the ownership of Al-generated code,
raising questions about the sustainability and
governance of Al-driven development practices (Oh et
al., 2024; OWASP Foundation, 2024). Against this
backdrop, this study addresses three guiding questions:

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

mailto:bmolaiya@kiu.ac.ug
mailto:oakanbi@baucyprus.edu.tr

* How is multimodal Al transforming software
development today?
* What trends are likely to shape its evolution
between 2025 and 20307
* What should developers and companies
prepare for in adopting these technologies
responsibly?
Drawing on both academic research and empirical
evidence from Stack Overflow discussions, this paper
provides a comprehensive analysis of the opportunities,
risks, and future trajectories of multimodal Al in
software engineering.

2. Literature Review

The ability of multimodal Al models to jointly reason
across text, images, audio, and video is revolutionizing
software engineering workflows by providing richer
debugging signals (such as screenshots, logs, and
telemetry), automated UI/UX development, and new
coding modalities (such as design-to-code and voice-to-
refactor). Recent developments in the field and in
research show a distinct move away from text-only
coding assistants and towards programs that can take in
and incorporate audio and visual input (Akhtar, 2024;
Patel, 2025). This allows for automated test generation,
interactive debugging, and quicker front-end
development. Using academic articles and industry
advancements during 2024-2025, this literature review
looks at the present and future directions of multimodal
Al in software development. It summarizes research on
how multimodal Al systems are changing software
architectural design, debugging procedures, and
conventional coding techniques.

2.1.Evolution from Text-Based to Multimodal
Coding Assistants
Text-based code completion was the main focus of early
Al coding aids like Amazon Code Whisperer (now
rebranded as Amazon Q Developer in 2024) (Amazon
Web Services, 2024) and GitHub Copilot. However,
recent developments are changing the paradigm in favor
of multimodal systems that can receive visual inputs,
such as brief screencasts, Figma mockups, and
screenshots, and produce useful frontend code using
CSS, React components, and responsive layouts. This
development is in line with a larger trend in the
industry: interactive multimodal Al systems are
expected to expand at a compound annual growth rate
(CAGR) of 34.4% to reach $10.89 billion by 2030
(Grand View Research, 2024). Recent industry surveys
show that close to 80% of developers favor Al tools,
with more than 40% using Al tools in their daily

development duties in 2024, demonstrating rapid
mainstream adoption (Al Haque et al, 2024; Stack
Overflow, 2024).

Multimodal Al Market ==
Size, by Region, 2018 - 2030

= II
____—----.l

2018 2019 2020 2021 202 2023 2024 2025 2026 202 2028 2029 203

@ MEA © LatnAmerca Asia Pacik Europe @ North

Figure 1: Multimodal Al market size by region, and
growth forecast (2025-2030)

A feature that directly helps processes like automatic Ul
development, GitHub Copilot's multimodel update,
which was unveiled at Universe 2024, combines models
from Anthropic, Google, and OpenAl and enables
developers to assign tasks to various models according
to latency, cost, and capability requirements (GitHub,
2024). Similarly, Amazon Q Developer has expanded
its multimodal capabilities with enhanced region
support and enterprise integration features (Amazon
Web Services, 2024). Enterprise adoption demonstrates
significant impact: BT Group generated over 100,000
lines of code using Amazon's Al coding tools in four
months, automating 12% of repetitive work for 1,200
developers (BT Group, 2024; Anima,2024) stated that
a design file can be converted into responsive,
production-ready code using nearproduction pipelines,
as shown by vendor solutions for Figma—React
conversion.

Regarding research, NVIDIA's Open Frontier-Class
NVLM Two prominent paradigms for multimodal large
language models were formalized by multimodal LLMs
(Dai et al., 2024; Si et al., 2025), which established the
foundation for code generation systems that integrate
textual, visual, and even temporal inputs. When taken
as a whole, these academic and industrial developments
suggest that multimodal Al assistants will eventually be
integrated straight into software engineering processes,
facilitating interactive debugging, adaptive model
selection techniques, and richer design-to-code
automation.

2.2. Multimodal Input Processing in Development
Environments

Recent developments in multimodal Al have extended
the capabilities of software development beyond

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

conventional text-based prompts, allowing for voice-
driven and visual coding workflows that expedite the
design-to-deployment process. Modern technologies
are now able to translate screenshots to code, turning
Figma designs and UI mock-ups straight into usable
frontend implementations in frameworks like React or
Vuejs (Salvi, 2023). Additionally, handdrawn
architecture recognition approaches bridge the gap
between early design artefacts and deployment
automation by converting sketched system diagrams
into executable cloud infrastructure configurations
(Zhang et al., 2025). Visual debugging agents provide
deeper, context-aware troubleshooting capabilities for
debugging by analysing screenshots of application
failures along with relevant code and logs (Puvvadi et
al., 2025).

Similarly voice-driven development is not left out in the
rapid advancement of multimodal AI. With the
advancement of voice-based programming owing to
parallel research and industrial tools, developers can
now issue natural language commands for refactoring
("Refactor this Python function into Rust") (OpenAl,
2024) or participate in conversational code reviews, in
which the system uses spoken language to explain logic,
identify inefficiencies, and suggest optimizations (Ross
etal., 2023). Additionally, by automating the creation of
test scripts from spoken requirements, voice-driven
testing lessens the conflict between the phases of
definition and validation (Gorer al., 2024). These
modalities collectively demonstrate the trend towards
multimodal interaction models, which enable
developers to switch between text, images, and voice
with ease, lowering cognitive load and speeding up
iteration cycles.

2.3.Enhanced Debugging
Context
Current multimodal Al debugging systems can jointly
process source code, error logs, user submitted
screenshots and video reproductions, runtime telemetry
data (e.g., CPU, memory, network), and stack traces
with visual context, enhancing the fidelity and
relevance of bug diagnoses. The debugging-specific
LLM Kodezi Chronos reduces debugging time by 40 %
and iteration count by 65 % compared to leading models
like GPT-4.1 and Claude, achieving a fix accuracy of
67.3 % in real-world scenarios (Khan et al., 2025). Al-
driven debugging agents such as DebugMate process
code, logs, stack traces, and documentation, identifying
root causes and resolving issues in significantly less
time than standard models (Modi et al., 2025). Earlier

Through Multimodal

studies demonstrate that combining multimodal inputs
logs, screenshots, video clips, produces superior
debugging suggestions compared to text-only prompts,
though reliability depends on tool-specific log parsing
to handle domain-specific formats (Neptune.ai,2025).
Concrete evaluations from the ASE-track series include
log analysis using ChatGPT-like agents, which show
promise in parsing but reveal limitations in consistency,
scalability, and handling unstructured logs (Le &
Zhang, 2023; Mudgal & Wouhaybi, 2023).
2.4.Al-Augmented Software Architecture and
Design

Recent advances in multimodal AI have enabled
automatic documentation generation by combining
code repositories with meeting transcripts and design
conversations. Multimodal Al tools can generate
architecture visualizations, which convert descriptions
in natural language into blueprints and system
diagrams. Furthermore, Khan et al. (2022) reported that
code-to documentation synthesis enables real-time
documentation updates depending on commit messages
and code modifications. Therefore, parallel
advancements in design pattern identification
demonstrate that multimodal Al models are capable of
identifying architectural anti-patterns through the
analysis of both code structures and system component
visual representations (Wei et al., 2024; Cicek et al.,
2024). These models are capable of converting high-
level natural language requests and sketches into
architecture diagrams and startup code in addition to
detection (Wei et al., 2024). This is what emerging
frameworks refer to as "automated software
engineering with rich context," wherein inputs like
telemetry, hand-drawn schematics, meeting transcripts,
and user interface screenshots are combined to create
documentation and suggest changes to the system
architecture (Yue, 2024). Lastly, design to code industry
technologies, such as Figma integrations, provide
concrete proof of this trend by showcasing the
increasing use of automated documentation and design
workflows.

2.5. Testing & QA Automation

Multimodal Al is reshaping software testing by
introducing capabilities that extend far beyond
traditional approaches. Multimodal Al, now combining
self-healing automation, voice-driven test scripting, and
visual regression techniques, is making the systems
redefine how quality assurance is performed. For
example, visual regression testing can now compare
user interface screenshots across builds, devices, and

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

browsers using graph-based models that go beyond
conventional pixel-by-pixel = matching. These
algorithms detect subtle variations while preserving an
understanding of context and layout, thereby reducing
false positives and capturing meaningful design
changes (Ragel et al., 2023). Industry platforms such as
Applitools, Percy (BrowserStack), and LambdaTest
have already begun to operationalize these capabilities
(Pandhare et al.,, 2025; Lost-Pixel, 2024; Katalon,
2025).

Another major advancement is voice-driven testing,
where natural language instructions, such as “Test the
checkout process under high load” or “Simulate 1,000
users logging in simultaneously,” are translated into
executable scripts for frameworks like Playwright,
Cypress, and Selenium. This shift lowers the barrier to
test creation by allowing non-specialists to express
requirements in plain language. Complementing this,
self-healing automation allows multimodal Al to
automatically detect broken selectors during runtime,
identify reliable alternatives, patch scripts, and even
generate pull requests with clear justifications (Saarathy
et al., 2024). Research shows that large language
models can repair flaky or failing tests with success
rates ranging between 51% and 83%, significantly
reducing the manual effort required for maintenance
(Fatima et al., 2023). Finally, these innovations
integrate seamlessly into continuous integration and
delivery (CI/CD) pipelines, providing real-time
feedback on user interface consistency, test stability,
and performance regressions with minimal setup
(Katalon, 2025). This shows that multimodal Al testing
solutions enhance both the reliability and efficiency of
quality assurance processes, accelerating development
cycles while reducing long-term maintenance costs.

2.6. Al "Full-Stack Developers"

Full applications can now be scaffolded from text and
mockups by multimodal Al agents and this capability
stems from new approaches to Al-Native Software
Engineering (SE 3.0), in which Al systems transform
from copilots into intelligent collaborators that
comprehend developer intent, write full-stack code, and
coordinate processes in the design, user interface,
backend, DevOps, and runtime domains (Mathews et
al., 2024). Third-generation Al solutions, including
agentic DevOps systems, which integrate across the
Software Development Lifecycle (SDLC) and automate
development pipelines from start to finish, are driving
industry momentum towards this paradigm (TechRadar
Pro, 2025). It is anticipated that autonomous

development capabilities would flourish between 2025
and 2030. In order to free up human engineers to
concentrate on high-level, strategic design, a 2025 study
presents a roadmap towards Al systems that manage
full-stack chores, including database schemas, DevOps
pipeline setup, performance tuning, security
enforcement, and UI design and backend API
development (Gu et al., 2025). Al-powered end-to-end
project management is coming soon. A move towards
truly autonomous software engineering is indicated by
research and industry narratives that, although still in
their infancy, anticipate Al managing complete software
projects from requirements elicitation to production
deployment with little to no human participation
(Mathews et al., 2024; TechRadar Pro, 2025; Gu et al.,
2025).

2.7.Real-Time Collaborative Al Pair Programmers
By comprehending team communication patterns and
coding styles across multiple developers, offering
contextually aware suggestions during concurrent
work, resolving merge conflicts through multimodal
context, and enabling real-time code review with visual
explanations and recommendations, future Al systems
are expected to improve software development
collaboration. (Noor et al., 2022; Lin et al., 2023). In
order to provide ongoing and contextual support
throughout the development lifecycle, these
collaborative Al systems are also anticipated to
seamlessly connect with development environments
and communication platforms like Slack, Discord, and
Microsoft Teams (Vasilescu et al., 2015; Jiang et al.,
2023).

Since the Al systems can create entire software
applications from natural language, including UI
design, business logic, database design, security
compliance, and even documentation, are becoming
more and more common, according to research
roadmaps and new industry tools. The increasing
viability of natural-language-driven full-stack creation
is demonstrated by systems such as Replit Agent v2,
which can now translate plain-English descriptions into
front- and back-end apps (Replit, 2025). However,
conversational software development is anticipated to
be supported by future systems. Self-feedback loops are
used by models like Self-Refine, which allow for
iterative improvement of outputs, including code,
without the need for extra training data. This feature
supports interactive development, in which natural
language feedback is used to evolve applications
(Madaan et al., 2023).

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

2.8. AI-Driven DevOps & Autonomous Deployments
A shift from reactive human-driven troubleshooting to
proactive, Al-driven resilience engineering is being
anticipated by emerging research, which envisions
autonomous DevOps systems where large-scale Al
models continuously monitor application and
infrastructure logs, identify anomalies, perform
automated root-cause analysis, and proactively suggest
or even execute corrective actions like safe rollbacks
and redeployments (Ait et al, 2024; Berardinelli., 2025).
This will improve mean time to recovery (MTTR) and
reduce downtime. Also, beyond log analysis,
comprehensive infrastructure optimization is one of the
projected skills. Automatic scaling of computing and
storage resources in response to user demand and
application workloads will be made possible by Al-
driven controllers (Huang et al., 2022). Perumallapalli
et al. (2021) argued that preventive remediation of
potential system faults can operate in parallel with
predictive maintenance supported by time-series
forecasting and anomaly detection. Building on this,
recent developments highlight cost-conscious
orchestration solutions that optimize both performance
and economic efficiency in multi-cloud and hybrid-
cloud environments (Tuli et al., 2020). In addition, real-
time security monitoring enhanced with adaptive threat
detection and response mechanisms has emerged as a
critical capability for ensuring resilience in Al-driven
DevOps pipelines (Moustafa et al., 2019).

Deployment pipelines will also become more
independent in the future where the full software
delivery lifecycle, including integration testing, staging,
production release, canary rollouts, and automated
rollback processes, will be coordinated by Al systems
(Zhai et al., 2021).

Moreover, to reduce risk during deployment, these
pipelines will make use of policy optimization and
reinforcement learning (Muhammad et al., 2023).
Importantly, in missioncritical settings, such end-to-end
automation minimizes human intervention while
preserving safety, auditability, and compliance (Malek
et al., 2017).

2.9. Challenges, Risks, Ethical & Legal Concerns

According to recent study, sophisticated software
projects face considerable difficulties in preserving
coherence across several modalities (speech, images,
and code). According to studies, the quantity of
multimodal information that can be processed

concurrently is limited by context window restrictions
in existing large language models, especially for large-
scale enterprise applications (Bubeck et al., 2023; L et
al., 2023). Although Al coding tools increase developer
productivity, if they are not educated with secure coding
best practices, they may produce code with unsafe
patterns. According to empirical research, between 15
and 25 percent of Al-generated code needs extra
scrutiny and changes in order to satisfy security
requirements (Pearce et al., 2025; Vaithilingam et al.,
2022). Industry standards place a strong emphasis on
integrating Al-aware code review and static analysis
procedures into development processes (OWASP
Foundation, 2024). Furthermore, various development
environments continue to present integration issues.
Adoption is hampered by research showing inconsistent
API support and performance differences among IDEs
(e.g., VS Code, JetBrains, Vim). According to studies,
40-60% of development teams have trouble integrating
multimodal Al tools into their current toolchains
(Eindhoven University of Technology, 2025).

There are also unresolved issues around code ownership
and intellectual property rights are brought up by Al
models trained on either public or proprietary
codebases. Remarkably, a thorough developer poll
indicates widespread knowledge and worry about the
uncertainty surrounding the ownership of Al-generated
code, with requests for tools that track provenance and
more transparent licensing guidelines to avoid disputes
(Stalnaker et al., 2024). The critical need for
compliance procedures is further highlighted by the
LiCoEval benchmark, which shows that even top
models can occasionally generate code that is
remarkably comparable to licensed repositories but do
not include the appropriate licenses (Xu et al., 2024).
Another major concern is how Al tools is changing the
nature of the workforce. Routine coding tasks are
becoming more automated, while positions in prompt
engineering, system architecture, and Al-human
cooperation are growing. According to worldwide
estimates, up to 30% of occupations may experience
significant task disruptions from Al (Kinder et al.,
2024), and workforce evaluations point to a trend
towards skill-based recruiting, with Al competencies
becoming more valued than traditional degrees
(Ehlinger et al., 2023).

Bias is not left out in many of the concerns raised in the
literature. Al code generators may propagate unsafe or
ineffective patterns in the absence of carefully selected,
high-quality training data, which could lead to the

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

105

growth of technical debt or vulnerabilities. To reduce
such risks, it is currently advised by strong industry
norms to incorporate Al-aware static analysis,
controlled code review methods, and curated datasets
(Stalnaker et al., 2024). Lastly, multimodal Al systems
processing code, visuals, and audio elevate risks around
data privacy and IP leakage, especially in cloud-
integrated tooling.

3. Methodology and Analysis

Data for this study were collected from Stack Overflow
using Python scripts with the “Search StackOverflow”
and “Write CSV” operators. Only English-language
questions and answers relevant to the search phrase
were included. Between 2024-01-01 11:14:27 and
2025-08-06 20:59:11, a total of 3,998 entries were
retrieved, consisting of 3,297 questions and 701
answers, with an average of 0.21 answers per question.
The dataset reflected active community engagement,
with questions receiving an average score of 0.47 (range
—7 to 36), an average of 479 views (maximum 34,684),
and 312 questions surpassing 1,000 views. Frequently
occurring tags included AI/ML (501), GitHub Copilot
(120), and Code Generation (77), while top search
terms such as tag:openai-api (499) and tag:intellij-idea
(487) highlighted developer interest in Al-assisted
tools.

The dataset underwent NLP pre-processing before
applying sentiment analysis using VADER, which
categorized texts into positive, negative, and neutral
sentiments. To complement this, Latent Dirichlet
Allocation (LDA) was applied to extract thematic
topics, enabling both sentiment and topical insights into
developer discussions on Al-assisted coding
technologies.

The findings show a clear mix of excitement and
challenges around multimodal Al tools. As Table 1
illustrates, most discussions were positive (67%),
though nearly a third reflected frustrations or errors.
Looking at specific tools in Table 2, ChatGPT drew the
most attention, while GitHub Copilot sparked the
highest engagement, reflecting both its usefulness and
integration hurdles. Smaller tools like Claude and Code
Whisperer appeared less often but were received
warmly by their early adopters. The themes in Table 3
reinforce this picture: much of the conversation
centered on IDE integration and troubleshooting,
showing that developers are keen to adopt these tools
but often turn to the community when technical
obstacles arise.

Table 1: Sentiment classification of Stack Overflow

osts
Sentiment | Count | Percentage | Average
Score
Positive 2,210 | 67.0% 0.48
Negative | 988 30.0% —0.33
Neutral 99 3.0% 0.00
Total 3,297 100% 0.314 (avg.)
Table 2: Al Tool Popularity
Tool Ques | Avg. | Avg. Avg. Positiv
tions | Score | Views | Sentim| e
ent Sentim
ent
ChatGPT 574 10.36 | 763 0.320 | 67.6%
GitHub 184 | 1.62 | 1,488 |0.167 | 57.6%
Copilot
Claude 17 0.59 | 657 0418 | 76.5%
Tabnine 4 -0.50 | 359 0.418 | 50.0%
Amazon 1 0.00 | 1,076 | 0.492 | 100.0%
CodeWhispe
rer
Figma to 1 -1.00 | 167 0.881 | 100.0%
Code
Table 3: Top terms across identified themes
Theme | Top Terms | Interpretation
(Keywords)
1 vscode, IDE and file
code, file, handling issues
using
2 self, torch, Machine learning
def, model implementation
3 import, OpenAl API usage
openai, errors
error
4 gt, It, Code
parsing, formatting/markup
quot issues
5 code, vs, Code execution
using, error | problems

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

6 studio, vs, Visual Studio
code, integration
project

7 intellij, IntelliJ/Java
java, idea, development
project

8 keras, Deep learning
model, frameworks
import, np

4. Discussion

Our analysis shows that developer engagement with
multimodal Al tools on Stack Overflow has been
dynamic rather than static. The sharp peak in November
2024, with 530 questions posted, signals heightened
community attention likely triggered by new feature
releases, updates, or the rising visibility of Al-assisted
coding tools. During this period, ChatGPT and GitHub
Copilot dominated discussions, with developers
frequently raising practical issues around API
integration, error handling, and file exclusions in IDEs.
The +204.7% growth rate in the final three months
compared to the first three months highlights the
accelerating adoption of these tools. Developers are not
only experimenting with multimodal Al but also relying
heavily on peer knowledge to overcome technical
challenges, with Stack Overflow serving as a key hub
for sharing solutions and workarounds.

Sentiment patterns add nuance to this trend, as February
2024 is the most positive month (average sentiment
0.429), and this reflected early enthusiasm around tools
such as ChatGPT and Claude, with posts often
emphasizing novelty and productivity gains. In
contrast, GitHub Copilot, while widely adopted and
attracting the highest average engagement (1,488 views
per question), elicited more balanced sentiment.
Furthermore, developers valued its practical benefits
but also voiced recurring concerns about blocked
completions and integration errors. Smaller tools such
as Figma to Code and Amazon CodeWhisperer
appeared far less frequently but were consistently
associated with positive impressions, suggesting that
even niche tools can generate strong approval among
early adopters.

The trajectory of these discussions illustrates a shift
from initial optimism and curiosity toward more
practical, experience-based evaluations and ChatGPT
remains dominant by volume, reflecting its versatility,
while Copilot draws the most focused engagement,

underscoring both its utility and the integration
challenges it presents. Developer questions further
reveal strong expectations for seamless integration of
Al into modern frameworks and IDEs, with tools like
Next.js AI SDK and Copilot seen as central to evolving
workflows. Nevertheless, concerns around trust,
control, and precision persist, particularly when Al
interacts with sensitive files or introduces unexpected
behaviors. These discussions suggest that multimodal
Alis welcomed as a productivity-enhancing innovation,
but its sustained adoption will depend on its ability to
become reliable, context-aware, and aligned with
developer needs..

5. Conclusion

The findings of this study highlight the dual nature of
multimodal Al adoption in software development and
developers express strong enthusiasm for tools such as
ChatGPT, GitHub Copilot, and emerging multimodal
frameworks, which are seen as catalysts for
productivity and innovation. However, community
discussions reveal persistent concerns about trust,
integration challenges, intellectual property rights, and
security risks. Sentiment analysis shows that while two-
thirds of discussions are positive, critical voices are
growing as real-world usage exposes technical
limitations and ethical dilemmas.

Looking ahead to 2030, multimodal Al is expected to
drive major transformations in UI/UX automation,
multimodal debugging, autonomous DevOps, and Al-
native software engineering, potentially evolving
toward systems that act as autonomous collaborators
and full-stack developers. Yet the success of this
transition depends on how well both developers and
organizations prepare. For developers, this means
building skills in prompt engineering, Alassisted
debugging, and high-level design thinking, while
allowing Al to handle boilerplate and repetitive code.
For companies, preparation involves implementing Al-
aware code review policies, investing in workforce
upskilling, and establishing compliance frameworks to
address security, bias, and licensing concerns.
Ultimately, multimodal AI will not replace human
developers but reshape the nature of their work. By
aligning adoption with ethical safeguards and practical
readiness, the software industry can harness the promise
of multimodal Al to create more efficient, reliable, and
collaborative development ecosystems.

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

107

6. References

Ait Said, M., & Marzouk, A. (2024). Microservice
Architecture DevOps Integration Challenges: A
Qualitative Study. Recent Trends and Advances in
Artificial Intelligence: Selected Papers from I[CAETA-
2024, 1138, 96.

Akhtar, Z. B. (2024). Unveiling the evolution of
generative Al (GAI): a comprehensive and
investigative analysis toward LLM models (2021-
2024) and beyond. Journal of Electrical Systems and
Information Technology, 11(1), 22.

Al Haque, E., Brown, C., LaToza, T. D., & Johnson, B.

(2025, June). The Evolution of

Information Seeking in Software Development:
Understanding the Role and Impact of Al Assistants.
In Proceedings of the 33rd ACM International
Conference on the Foundations of Software
Engineering (pp. 1494-1502).

Amazon Web Services. (2024). Amazon Q Developer
enterprise features. AWS

Documentation.
https://docs.aws.amazon.com/amazong/

Amazon Web Services. (2024). Amazon Q Developer:
Enhanced multimodal capabilities and regional
expansion. AWS Blog.
https://aws.amazon.com/blogs/developer/

Anima. (2024). Figma to React: Generate developer-
friendly code from your designs.
https://www.animaapp.com

Berardinelli, L., Muttillo, V., Eramo, R., Bruneliere,
H., Rahimi, A., Cicchetti, A, ... &

Saadatmand, M. (2025). Model Driven Engineering,
Artificial Intelligence, and DevOps for Software and
Systems Engineering: A Systematic Mapping Study of
Synergies and Challenges. ACM Transactions on
Software Engineering and Methodology.

BT Group, (2024). BT Group advances Al-enhanced
product development with Amazon CodeWhisperer.
Enterprise Al Report, 12(4), 45-52.

Bubeck, A., et al. (2023). Sparks of artificial general
intelligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712.

Cigek, S., Aksu, M. S., Oztiirk, E., Bingdl, K., Mersin,
G., Kog, M., ... & Basarir, L. Architectural Critique
with Artificial Intelligence: Generating Architectural
Reviews through Vision-Language Models. Journal of
Computational Design, 6(1), 165-190.

Dave, H., Sonje, S., Pardeshi, J., Chaudhari, S., &
Raundale, P. (2021, March). A survey on

Artificial Intelligence based techniques to convert User
Interface design mock-ups to code. In

2021 International Conference on Artificial Intelligence
and Smart Systems (ICAIS) (pp. 2833). IEEE.

Durgam, D., Anandhan, N., & Pathak, R. (2025). Al
Image Generation: Emerging Trends and Its Impact on
UI/UX Design. IJSAT-International Journal on Science
and Technology, 16(2).

Ehlinger, E. G., & Stephany, F. (2023). SKILLS OR A
DEGREE?: THE RISE OF SKILLBASED HIRING
FOR AI AND GREEN JOBS. Bruegel.

Eindhoven University of Technology. (2025). Al in
software engineering: Challenges in developer
toolchains. Eindhoven Research Portal.

Espinha Gasiba, T., losif, A. C., Kessba, 1., Amburi, S.,
Lechner, U., & Pinto-Albuquerque, M. (2024). May
the source be with you: On chatgpt, cybersecurity, and
secure coding. Information, 15(9), 572.

Fatima, S., Hemmati, H., & Briand, L. (2024).
FlakyFix: Using large language models for predicting
flaky test fix categories and test code repair. /[EEE
Transactions on Software Engineering.

George, T. T., & Harendra, R. K. (2024). Enhanced
model-driven web application development with code
generation using deep learning technique. Intelligent
Decision Technologies, 18(1), 75-90.

GitHub. (2024, November). GitHub Copilot gains
multi-model support. GitHub Universe 2024.
https://github.blog

Gorer, B., & Aydemir, F. B. (2024, June). GPT-
powered elicitation interview script generator for
requirements engineering training. In 2024 IEEE 32nd
International Requirements Engineering Conference

(RE) (pp. 372-379). IEEE.

Grand View Research. (2024). Multimodal Al market
size, share & trends analysis report by modality (text,

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

https://docs.aws.amazon.com/amazonq/
https://docs.aws.amazon.com/amazonq/
https://aws.amazon.com/blogs/developer/
https://aws.amazon.com/blogs/developer/
https://www.animaapp.com/
https://www.animaapp.com/
https://github.blog/
https://github.blog/

108

speech, image, video), by offering (hardware, sofiware,
services), by end-use, by region, and segment
forecasts, 2024 — 2030.
https://www.grandviewresearch.com/industry-
analysis/multimodal-ai-market

Gu, A., Jain, N., Li, W. D., Shetty, M., Shao, Y., Li, Z.,
... & Solar-Lezama, A. Tasks, Challenges, and Paths
Towards Al for Software Engineering. In ICLR 2025
Workshop: VerifAl: Al Verification in the Wild.

Huang, V., Wang, C., Ma, H., Chen, G., & Christopher,
K. (2022, November). Cost-aware dynamic multi-
workflow scheduling in cloud data center using
evolutionary reinforcement learning. In International
Conference on Service-Oriented Computing (pp. 449-
464). Cham: Springer Nature Switzerland.

Jiang, N., Liu, X., Liu, H., Lim, E. T. K., Tan, C. W., &
Gu, J. (2023). Beyond Al-powered context-aware
services: the role of human—AlI collaboration.
Industrial Management & Data Systems, 123(11),
2771-2802.

Katalon. (2025). Top 7 visual regression testing tools
to improve efficiency. https.//katalon.com/resources-
center/blog/visual-regression-testing-tools

Khan, I., et al. (2025). Kodezi Chronos: A debugging-
first language model for repositoryscale code
understanding. arXiv preprint arXiv:2507.12482.
https://arxiv.org/abs/2507.12482

Khan, J. Y., & Uddin, G. (2022, October). Automatic
code documentation generation using gpt-3. In
Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering (pp.
1-6).

Kinder, M., de Souza Briggs, X., Liu, S., & Muro, M.
(2024). Generative Al, the American worker, and the
future of work.

Lalanda, P., & Roig, N. A. (2025). Ethical and Legal
Challenges of Artificial Intelligence with Respect to
Intellectual Property. In The Al Revolution: How
Technological Developments Affect the Audiovisual
Sector (pp. 63-80). Cham: Springer Nature
Switzerland.

Le, V.-H., & Zhang, H. (2023, September). Log
parsing: How far can ChatGPT go? In

Proceedings of ASE 2023, NIER Track.
https://arxiv.org/abs/2306.01590

Li, D., Shao, R., Xie, A., Sheng, Y., Zheng, L.,
Gonzalez, J., ... & Zhang, H. (2023). How long can
context length of open-source llms truly promise?. In
NeurIPS 2023 Workshop on Instruction Tuning and
Instruction Following.

Lin, Z., Ma, W,, Lin, T., Zheng, Y., Ge, J., Wang, J., ...
& Li, L. (2025). Open Source Albased SE Tools:
Opportunities and Challenges of Collaborative
Software Learning. ACM Transactions on Software
Engineering and Methodology, 34(5), 1-24.
Lost-Pixel. (2024). Top 9 automated visual testing
tools (2024). Lost-Pixel Blog.

Ma, X., Liu, Y., & Wang, C. (2024, November).
Design and Implementation of Tool Collaboration
Platform for AI Agents. In 2024 4th International
Conference on Electronic Information Engineering
and Computer (EIECT) (pp. 608-613). IEEE.
Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreftfe, S., ... & Clark, P. (2023). Self-refine:
Iterative refinement with self-feedback. Advances in
Neural Information Processing Systems, 36, 46534-
46594.

Malek, S., Canavera, K., & Esfahani, N. (2017).
Automated inference techniques to assist with the
construction of self-adaptive software. In Managing
trade-offs in adaptable software architectures (pp.
131-154). Morgan Kaufmann.

Mathews, N. S. (2024). Code Generation and Testing
in the Era of Al-Native Software Engineering.

Modi, R., Reddy, N., & Kodur, S. S. (2025).
DebugMate: An Al agent for efficient on-call
debugging in complex production systems. Discover
Data, 3, Article 33.

Moustafa, N., Hu, J., & Slay, J. (2019). A holistic
review of network anomaly detection systems: A
comprehensive survey. Journal of Network and
Computer Applications, 128, 3355.

Mudgal, P., & Wouhaybi, R. (2023, August). An
assessment of ChatGPT on log data. In
International Conference on Al-generated
Content (pp. 148-169). Singapore: Springer
Nature Singapore.

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://www.grandviewresearch.com/industry-analysis/multimodal-ai-market
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://katalon.com/resources-center/blog/visual-regression-testing-tools
https://arxiv.org/abs/2507.12482
https://arxiv.org/abs/2507.12482
https://arxiv.org/abs/2306.01590
https://arxiv.org/abs/2306.01590

Muhammad, A. (2023). Leveraging Cloud-Driven
Reinforcement Learning for Dynamic Resource
Management in Autonomous Systems.

Neptune.ai. (2025, January). Multimodal Large
Language Models .
https://neptune.ai/blog/multimodal-large-language-
models

Noor, N. (2025). Generative Al-assisted software
development teams: opportunities, challenges, and
best practices.

Oh, S., Lee, K., Park, S., Kim, D., & Kim, H. (2024,
May). Poisoned chatgpt finds work for idle hands:
Exploring developers’ coding practices with insecure
suggestions from poisoned ai models. In 2024 IEEE
Symposium on Security and Privacy (SP) (pp. 1141-
1159). IEEE.

OpenAl. (2024, May). Voice-driven code editing with
GPT-40. OpenAl Blog. https://openai.com/blog
OWASP Foundation. (2024). Al coding assistants and
secure development guidelines. https://owasp.org

Pandhare, H. V. (2025). Future of Software Test
Automation Using AI/ML. International Journal Of
Engineering And Computer Science, 13(05).

Patel, P. K. K. (2025). Exploring Student Developers’
Perspectives on Al-Powered

Development Assistants for Web Accessibility: Trust,
Adoption, and Usage Patterns (Doctoral dissertation,
Carleton University).

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., &
Karri, R. (2025). Asleep at the keyboard? assessing the
security of GitHub copilot’s code contributions.
Communications of the ACM, 68(2), 96-105..

Perumallaplli, R. (2021). PREDICTIVE
MAINTENANCE IN CLOUD
INFRASTRUCTURE: A MACHINE LEARNING
FRAMEWORK. Available at SSRN 5228213.

Preethi, P., Ragavan, V., Abinandhana, C.,
Umamaheswari, G., & Suvethaa, D. R. (2024,
December). Towards CodeBlizz: Developing an Al-
Driven IDE Plugin for Real-Time Code

Suggestions, Debugging, and Learning Assistance
with Generative Al and Machine Learning Models. In

2024 International Conference on Emerging Research
in Computational Science (ICERCS) (pp. 1-7). IEEE.

Puvvadi, M., Arava, S. K., Santoria, A., Chennupati, S.
S. P, & Puvvadi, H. V. (2025, March). Coding agents:
A comprehensive survey of automated bug fixing
systems and benchmarks. In 2025 I[EEE 14th
International Conference on Communication Systems
and Network Technologies (CSNT) (pp. 680-686).
IEEE.

Ragel, R. K. C., & Balahadia, F. F. (2023, November).
Visual Test Framework: Enhancing

Software Test Automation with Visual Artificial
Intelligence and Behavioral Driven

Development. In 2023 IEEE 15th International
Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control,
Environment, and Management (HNICEM) (pp. 1-5).
IEEE.

Ramachandran, R. (2025, March).
Software Architecture Design With
Intelligent Assistants-A Comparative Analysis. In
SoutheastCon 2025 (pp. 1446-1454). IEEE.

Transforming

Replit. (2025, June). Agent v2: Autonomous full-stack
software generation from natural language. Wikipedia.
https://en.wikipedia.org/wiki/Replit

Ross, S. 1., Martinez, F., Houde, S., Muller, M., &
Weisz, J. D. (2023, March). The programmer’s
assistant: Conversational interaction with a large
language model for software development. In
Proceedings of the 28th International Conference on
Intelligent User Interfaces (pp. 491-514).

Saarathy, S. C. P., Bathrachalam, S., & Rajendran,

B. K. (2024). Self-Healing Test Automation
Framework using Al and ML. International Journal
of Strategic Management, 3(3), 45-77.

Salvi, G. (2023). Web Ul code generation: a
transformer-based model applied to real-world
screenshots (Doctoral dissertation, Politecnico di
Torino).

Si, C., Zhang, Y., Li, R., Yang, Z., Liu, R., & Yang, D.
Design2Code: Benchmarking multimodal code
generation for automated front-end engineering. In
Proceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://neptune.ai/blog/multimodal-large-language-models
https://openai.com/blog
https://openai.com/blog
https://owasp.org/
https://owasp.org/
https://en.wikipedia.org/wiki/Replit
https://en.wikipedia.org/wiki/Replit

110

Computational Linguistics: Human Language
Technologies (Vol. 1, pp. 3956-3974).

Singh, C., & Sudha, K. (2024). Breaking Down
Barriers: A Survey of Screenshot-to-Code Translation
Tools and Strategies. Available at SSRN 4935453,
Stack Overflow Developer Survey. (2024). Developer
Al tool adoption survey 2024.
https://survey.stackoverflow.co/2024/

Stack Overflow. (2024). 2025 Developer Survey. Al |
2025 Stack Overflow Developer
Survey. https://survey.stackoverflow.co/2025/ai

Stalnaker, T., Wintersgill, N., Chaparro, O., Heymann,
L. A., Di Penta, M., German, D. M., & Poshyvanyk,
D. (2024). Developer Perspectives on Licensing and
Copyright Issues Arising from Generative Al for
Software Development. ACM Transactions on
Software Engineering and Methodology.

TechRadar Pro. (2025, July 24). The three generations
of Al coding tools, and what to expect through the rest
of 2025.

Tuli, A. M., Tuli, S., Tuli, R., & Gill, S. (2020). Next
generation technologies for smart infrastructure:
Challenges, vision, model, trends and future
directions. /EEE Access, 8, 108— 120.

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022,
April). Expectation vs. experience: Evaluating the
usability of code generation tools powered by large
language models. In Chi conference on human factors
in computing systems extended abstracts (pp. 1-7).

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., & Filkov,
V. (2015, August). Quality and productivity outcomes
relating to continuous integration in GitHub. In
Proceedings of the 2015 10th joint meeting on
foundations of software engineering (pp. 805-816).

Wan, Y., Wang, C., Dong, Y., Wang, W., Li, S., Huo,
Y., & Lyu, M. (2025). Divide-andConquer: Generating
UI Code from Screenshots. Proceedings of the ACM
on Software Engineering, 2(FSE), 2099-2122.

Wei, J., Tan, C., Chen, Q., Wu, G, Li, S., Gao, Z., ... &
Guo, R. (2025). From Words to

Structured Visuals: A Benchmark and Framework for
Text-to-Diagram Generation and Editing. In
Proceedings of the Computer Vision and Pattern
Recognition Conference (pp. 13315-13325).

Xu, W., Gao, K., He, H., & Zhou, M. (2024).
LiCoEval: Evaluating LLMs on license compliance in
code generation. arXiv preprint arXiv:2408.02487.
Yue, S. (2024). A multimodal conceptual framework to
achieve automated software evolution for context-rich
intelligent applications. /nnovations in Systems and
Software Engineering.

Zhai, H., & Wang, J. (2021). Automatic deployment
system of computer program application based on
cloud computing. International Journal of System
Assurance Engineering and Management, 12(4), 731-
740.

Zhang, F., Chen, H., Chen, Q., & Liu, J. (2025). Cloud
software code generation via knowledge graphs and
multi-modal learning. Journal of Cloud Computing,
14(1), 1-19.

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.

https://survey.stackoverflow.co/2024/
https://survey.stackoverflow.co/2024/

