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Abstract 

As cyber threats increase in sophistication and stealth, 

traditional Intrusion Detection Systems (IDSs) typically 

experience difficulties identifying emerging types of attacks 

(e.g., zero-day attacks) because they rely on known 

signatures and lack interpretability. This paper presents the 

development of SENTRY-AI, an explainable, multi-modal 

anomaly detection framework that integrates deep learning 

and computer vision to improve cybersecurity defenses in 

cyberspace. SENTRY-AI architecture employs a Variational 

Autoencoder (VAE) to conduct unsupervised anomaly 

detection on tabular network features, in addition to a 

Convolutional Neural Network (CNN) to analyze time-series 

traffic data transformed into a Gramian Angular Field (GAF). 

An analysis is performed with a late-fusion approach utilizing 

outputs from the two models to evaluate the efficacy and 

robustness of the hybrid approach. Gradient-weighted Class 

Activation Mapping (Grad-CAM) is employed to provide 

visual explanations which indicate the most significant areas 

of input used to make the predictions for the purpose of 

human-in-the-loop decision making. The experimental work 

is conducted across three intrusion detection datasets (NSL-

KDD, CICIDS2017, and UNSW-NB15), demonstrating that 

SENTRY-AI outperformed traditional machine learning and 

modern deep learning-based IDS approaches. In fact, 

SENTRY-AI achieved an F1-score of 98.92% on NSL-KDD, 

100.00% on UNSW-NB15, and an AUC-ROC score 

exceeding 99% on all datasets. 
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1. Introduction 

 

Background & Context 

 

The modern cybersecurity environment is characterized by 

an unprecedented rise in the sophistication, number, and 

variety of cyber threats. Digital transformation is prevalent 

across all aspects of society and increasing reliance on 

systems and networks connected with each other, increases 

both vulnerabilities and attack surfaces (Almiani et al., 2020). 

An increase in cyber threats, including ransomware attacks, 

phishing attacks, denial-of-service (DoS) attacks, advanced 

persistent threats (APTs), and zero-day exploits, is seen 

across the range of cyber actors, from organized crime 

operations to state-sponsored threat actors (Moustafa et al., 

2019). The increased frequency of attacks illustrates the 

limitations of a well-established, traditional signature- based 

intrusion detection system (IDS) that relies on reference 

known patterns of cyber threats, and as a result lacks the 

ability to recognize new and methodical attacks. 

 

Methods of anomaly detection supported by artificial 

intelligence (AI) and machine learning (ML), have gained 

attention to deal with these obstacles. Anomaly detection 

systems do not rely on signature-based approaches and detect 

abnormal behavior from typical network behavior. This style 

of threat detection is more proactive and flexible. Machine 

learning fundamental algorithms and methods, in particular, 

deep learning methods such as Variational Autoencoders 

(VAEs) and Convolutional Neural Networks (CNNs), have 

been proven able to detect anomalies in complex and high-

dimensional network data with higher accuracy (Mirsky et 

al., 2018). The strengths of these methods are found in the 

potential to learn from massive volumes of data, detect subtle 

patterns, and reconfigure to accommodate instantaneous 

threat environments. 

 

Nonetheless, despite the advantages of anomaly detection 

methods, traditional ML-based detection often entails a lack 

of explainability. This lack of simple interpretability can 

result in unexplainable predictions and an inability to trust 

those predictions from a cyber intrusion analyst, which makes 

implementing these systems an impediment and disadvantage 

in a real environment where humans need to interpret results 

and use that evidence in a meaningful way to affect important 

decisions. As a result of the demand for explainable artificial 

intelligence (XAI) that can answer why the AI model acted 

the way it did and provide an intuitive explanation to support 

its predicted output (Samek & Müller, 2019). 

  

Many XAI approaches like Gradient-weighted Class 

Activation Mapping (Grad-CAM) can assist intrusion 

analysts in converting AI model provided alerts into 

interpretable visual representations to build analytical trust or 

increase the usability of the model decisions. 

 

Beyond technical performance, the study emphasizes human-

centric cybersecurity, showing that the integration of 
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explainable AI (XAI) significantly enhances analyst trust, 

reduces cognitive load, and supports ethical decision-making. 

These results highlight the importance of visual 

interpretability and multimodal learning in advancing the 

next generation of adaptive, transparent, and trustworthy 

intrusion detection systems. 

 

Research Problem Statement 

The central problem of this research is the transparency and 

interpretability of a traditional AI- based system for detecting 

incidents. When analysts cannot understand the direct 

implications of a model’s prediction or output, trust in the 

model will be dissipated, ultimately compromising both the 

ability of an analyst to make important decisions and the 

ability to mitigate a cybersecurity threat (Samek & Müller, 

2019). Becoming significantly advanced and ubiquitous 

across every industry, analysts need more interpretable 

systems in order to hypothesize why an activity within their 

network was classified anomalously. 

This research will address these issues by incorporating 

computer vision techniques with explainable AI (XAI) 

techniques with anomaly detection frameworks. By 

visualizing network traffic as images, analysts will view 

complex network data in intuitive and human-interpretable 

space. Also, using XAI techniques, such as Grad-CAM, will 

allow an analyst to identify which regions of the 

visualizations are significant in formulating the model’s 

decision which greatly enhances interpretable transparency. 

 

Objectives and Research Questions 

This research aims to develop an innovative, explainable AI-

powered anomaly detection framework that leverages 

computer vision to enhance cybersecurity. Specifically, the 

objectives include: 

1. Developing a multi-modal anomaly detection 

framework integrating Variational Autoencoders 

(VAEs) and Convolutional Neural Networks 

(CNNs). 

2. Assessing the effectiveness of visual representations 

for detecting network anomalies. 

3. Applying Grad-CAM to produce interpretable 

visual explanations. 

 

The research questions guiding this study are: 

1. To what extent can computer vision methodologies 

enhance the performance and accuracy of anomaly 

detection systems? 

2. How do visual interpretability and explainable AI 

influence analyst decision-making and trust in IDS 

alerts? 

3. What ethical considerations and practical 

implications arise from integrating XAI into 

operational cybersecurity practices? 

 

Significance and Contributions 

This research framework has the potential to contribute 

meaningfully to the multi-discipline domains of 

cybersecurity, artificial intelligence, and human-computer 

interaction. The research highlights a novel, explainable, and 

intuitively-oriented anomaly detection system, which 

includes applied data-to-decision outputs relevant to real-life 

cybersecurity issues. Security analysts who use visual 

explanations will be able to read alerts quicker and more 

effectively, thereby reducing incident response time, and 

improving decision-making accuracy (Mirsky et al., 2018). 

 

From an ethical stand-point, this research may be used to 

highlight and promote transparency, accountability, and 

trustworthiness of automated systems for cybersecurity. 

Explainable models are one way to use visual data without 

treating every algorithm as a black-box, which gives an 

explanation for why an anomaly was considered an anomaly, 

thus supporting the ethical adoption of AI in governance 

processes (Samek & Müller, 2019). 

 

Human cognition can be enhanced by making explainable 

and clear interpretability into algorithms. Analysts can 

rapidly agree/disagree with model decisions, and distinguish 

false positives from actual threats more efficiently, reducing 

time wasted on explanations and improving operational 

efficiency. The interdisciplinary dimensions of this research 

have extended to human-computer interaction, where 

analysts and AI can foster security operations together. 

  

Structure Overview of Paper 

The remaining sections of this paper will follow this 

structure; Section 2 is a literature review, including anomaly 

detection approaches, computer vision application and 

explainable AI in cybersecurity. Section 3 includes the 

methodology, including dataset access, network visualization 

approaches, and analytic models in detail. Section 4 describes 

the experimental findings, including measures of 

performance and Grad-CAM visualizations. Section 5 

discusses the findings and the relevance for cybersecurity 

practice and outlines limitations. Finally, Section 6 provides 

a conclusion, including future research possibilities and 

recommendations for improvements and limitations on 

practical applications. 

 

2. Related works 

 

Cybersecurity and Anomaly Detection 

The rise of digital industries and the growing number of 

connected devices, the attack surface for cyber threats has 

increased exponentially. Signature-based intrusion detection 

systems (IDS) are less useful for advanced and evolving 

cyber threats, creating a need for detection systems that are 

more adaptive and smarter (Salem et al., 2024; Hodo et al., 

2017; Brundage et al., 2018; Zhang & Ran, 2021). 

 

Anomaly detection has become an important approach to 

cybersecurity due to its aim to identify deviations to 

established normal behavior. Anomaly detection is a 

departure from signature-based methods as it does not depend 
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on known attacks, but rather the establishment of what 

normal operation looks like, it is therefore better at 

identifying novel attacks or zero- day attacks (Radford et al., 

2018; Mohammadpour et al., 2020; Babaey & Faragardi, 

2025; Lunardi et al., 2023). The current threat landscape 

poses a serious threat as attackers seek new techniques to 

evade typical security mechanisms (Bamber et al., 2025; 

Talukder et al., 2024). 

 

Since this approach of anomaly detection has gained 

attention, various attacks and machine learning (ML) and 

artificial intelligence (AI) approaches have been examined to 

boost anomaly detection. For example, in the study 

conducted by Santoso et al. (2024) an adaptive anomaly 

detection model was developed using the Naive Bayes 

algorithm and cross-validation. This model was able to detect 

network anomalies with high accuracy and efficiency, which 

indicates that lightweight ML models have benefits for 

societal applications like real-time cybersecurity (Doost et 

al., 2025; Waghmode et al., 2025). 

  

In a similar manner, Nwagwughiagwu (2024) developed an 

AI-powered anomaly detection framework for proactive 

cybersecurity and preventing data breaches. The study also 

noted that AI should be integrated into plans for identifying 

anomalies that might not otherwise be detected through 

traditional methods. This would improve cybersecurity 

strength for organizations (Okdem & Okdem, 2024; Zhang et 

al., 2025a). 

 

AI in general in organizations provides a deeper layer to 

anomaly detection, however it is not limited to IT 

environments. More and more environments are being built 

as interconnected entities, through the Internet of Things 

(IoT) and smart cities that require anomaly detection. The 

author examined how AI-enabled systems can allow anomaly 

detection in the IoT space in smart cities to recognize 

complex security environments, which present unique 

problems (Biju & Wilfred, 2025; Halbouni et al., 2022; Wang 

et al., 2024a). 

 

The use of AI to perform anomaly detection may also extend 

to encrypted traffic, which has created another intersection in 

cybersecurity. The systematic review undertaken by Kim et 

al. (2024) examined AI-based anomaly detection techniques, 

within the perspective of encrypted traffic, and described 

several characteristics and performance measurement 

indicators. One noteworthy aspect of the review, is that AI 

models should be developed so privacy of data is not 

compromised, as dynamic protocol-based techniques can be 

used to examine encrypted traffic while also possibly 

providing a level of security without compromising 

confidentiality (Cui et al., 2023; Talukder et al., 2024; 

Neupane et al., 2022). 

 

While there have been advancements and progress with AI-

enabled anomaly detection systems, challenges that 

accompany AI also pose barriers for consistent practical 

usage. One principle challenge to the application of anomaly 

detection systems is interpretable AI or once referred to as the 

"black box" problem. Security analysts are less likely to trust 

and act on the results of the AI model, as even if trained, 

complex AI models may not clearly explain why it made a 

particular choice (Zhang et al., 2022; Mane & Rao, 2021). 

This has implications as the industry identifies the need for 

Explainable AI (XAI) techniques for trust in AI in 

cybersecurity applications (Neupane et al., 2022; Zhang et 

al., 2022; Arreche et al., 2024). 

 

Supervised Learning Approaches 

Supervised learning algorithms, trained on labeled datasets, 

have also been widely applied for intrusion detection and 

malware classification. Studies have shown that algorithms 

like SVM, 

  

Decision Trees, and Random Forests can help learn and 

identify attacks patterns that are known (Waghmode et al., 

2025; Doost et al., 2025; Disha & Waheed, 2022). For 

example, Choppadandi et al. (2024) used Random Forests 

and Isolation Forests to detect anomalies from normal 

network traffic, and were able to achieve high accuracy rates 

at identifying malicious activities (Amin et al., 2022; Rajathi 

& Rukmani, 2025). 

 

Deep learning approaches (CNNs and RNNs) have also been 

used in cybersecurity. These models can capture more 

complex behaviors in data to help identify more advanced 

threats (Alom et al., 2018; Mohammadpour et al., 2020; 

Oyinloye et al., 2024). 

 

With unsupervised learning, there is no use of labeled data 

that is indicative of an event. Instead, unsupervised learning 

approaches can help span new novel threats, or at least threats 

that are unknown. For example, clustering algorithms like K-

Means, or anomaly detection, in which performance 

measures are derived from a random forest of possible 

training examples (Gupta et al., 2022a; Hara & Shiomoto, 

2020). Choppadandi et al. (2024) provided a review of 

clustering and anomaly detection methods and their abilities 

to find or model hidden patterns that suggest that cyber 

threats are present (Yang et al., 2021; Zhang et al., 2021). 

 

In addition, semi-supervised learning can utilize both labeled 

and unlabeled data, making it a form of supervised learning 

which combines labeled and unlabeled training data, 

reducing some reliance on labeled data. This approach is 

especially beneficial when labeled data is not available, since 

models can learn from just a few labeled instances and then 

take advantage of the excess of unlabeled data, (Hara et al., 

2020a; Hara et al., 2020b; Lunardi et al., 2023). 

Reinforcement Learning and Adaptive Systems 

 

Reinforcement learning (RL) has been researched as an 

adaptive system in cybersecurity. An RL-based model will 
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have the ability to learn the best defense strategies from their 

interactions with the environment. In RL, models receive 

feedback in the form of rewards or punishments, allowing it 

to choose the actions that will minimize threats (Alom et al., 

2018; Wang et al., 2024). 

 

Hybrid and Ensemble Methods 

Combining different AI/ML techniques can increase the 

robustness and accuracy of the cybersecurity systems. Hybrid 

models can utilize a number of algorithms at the same time 

to achieve benefits from those algorithms, while ensemble 

methods combine the estimates from multiple models to 

improve prediction, (Gupta et al., 2022; Lv & Ding, 2024; 

Kaur et al., 2023). 

  

For example, Choppadandi et al. (2024) showed that 

ensemble methods that used Random Forests with 

Autoencoders significantly outperformed single model 

methods of anomaly detection, (Amin et al., 2021; Bamber et 

al., 2025). 

 

Challenges and Considerations 

Despite the advances, issues remain in regard to using AI/ML 

in cybersecurity. One of the main issues is related to the 

complex models normally referred to as the "black box" issue 

(Mane & Rao, 2021; Zhang et al., 2022). An additional 

challenge lies with the quality and representativeness of the 

training data (Nkashama et al., 2022; Anderson & Roth, 

2018), especially when it comes to dealing with imbalanced 

or contaminated data (Wang et al., 2024a). 

 

Computer Vision-Based Intrusion Detection Systems 

(IDS) 

The increasing incorporation of computer vision techniques 

into Intrusion Detection Systems (IDS) represents promising 

potential to improve cybersecurity approaches 

(Mohammadpour et al., 2020; Babaey & Faragardi, 2025; 

Casey et al., 2024). By converting network traffic into visual 

artifacts, computer vision-based IDS may intentionally use 

the features of image processing and pattern recognition to 

discover threats and anomalies (Zhang et al., 2021; Chen et 

al., 2021b). Jabbar et al. (2021) described the use of computer 

vision techniques to detect anomalies in IoT networks, and 

emphasized the effectiveness of using visual data in the 

detection of breaches (Biju & Wilfred, 2025; Gupta et al., 

2022a). Moreover, the application of new deep learning 

models, particularly Convolutional Neural Networks 

(CNNs), has greatly improved intrusion detection 

performance and accuracy (Alrayes et al., 2024; Zhang & 

Ran, 2021). 

 

Explainability and Human-Centric AI 

As Artificial Intelligence (AI) systems become increasingly 

underpinned as a cybersecurity resource, bringing human-

centric approaches and transparency in the design of AI 

systems is increasingly emphasized (Neupane et al., 2022; 

Zhang et al., 2022). Explainable AI (XAI) is defined as AI 

systems designed to help humans understand AI decisions 

and reasoning, which builds trust and enables humans to 

make more informed decisions in a security context (Arreche 

et al., 2024). In the cybersecurity domain, much of this 

opacity and uncertainty can be attributed to the complex 

models built by AI, often termed "black boxes" (Bowen & 

Ungar, 2020). If professionals do not understand the 

explanations behind AI-driven decisions, they may not trust 

the AI systems or rely on them as expected (Zhang et al., 

2022). While there is 

  

an array of techniques available to support explainability in 

AI models, such as LIME and SHAP (Chen et al., 2021a; 

Alexander & Aaron, 2025), technical explainability is only a 

facilitating component of a human-centric AI design 

approach, which means to include human needs and values in 

system design (Oluwasusi & Al-Turjman, 2024). 

So human-centric AI design in cybersecurity means to create 

systems that complement human decision-making and action, 

where there are feature sets and capabilities for humans and 

AI to be collaborative on tasks (Neupane et al., 2022). 

However, designing with human needs and values in mind is 

only as useful as balancing complexity in models and 

demonstrating challenges associated with interpretability, 

privacy, and autonomy (Kaur et al., 2023; Casey et al., 2024). 

 

Summary of Gaps 

Even though AI based anomaly detection, machine vision 

techniques, and explainable-AI (XAI) has reached, 

substantial maturity, there exist several gaps in the 

theoretical, research, and practical arena underpinning the 

future effectiveness and trust of deploying effective 

cybersecurity solutions. 

 

First, while many machine learning (ML) or deep learning 

(DL) models have reached an appropriate level of accuracy 

to be employed for anomaly detection, however, most 

existing systems are still 'black boxes' and do not provide 

users or analysts any insight into the arguments supporting 

their rationale. This is important as trust diminishes when 

systems operate as black boxes, and the practical use of 

models is limited due to the need to aid human analysts who 

require a clear, deliberate explanation from models to inform 

incident response or as a basis for making decisions. 

 

Second, computer-vision based intrusion detection system 

(IDS) techniques have not been scaled out for operational lab 

settings even they'll transform raw and complex network data 

into formats that can be interpreted by humans as a visual 

representation. Most literature is in the experimental or 

academic stages with little demonstrated use in actual 

environments that can sustain high throughput and high 

volume transactions. In addition, challenges remain related to 

visual features, standardization of datasets, and enabling on-

the-fly real-time processing and decision making remain 

unrealized. 
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Third, XAI has progressed well in theory, and it's value for 

cybersecurity, in particular visual IDS may not have matured 

in practice, yet. The vast majority of XAI desired for 

cybersecurity is designed for classification in different 

domain such as health care or finance which are then quite 

different in both security and cyber resilience. Most off the 

shelf technologies are not built to decipher complexity of 

cybersecurity data based on domain specification, and 

inferences about domain specifications are unique to humans 

when using human generated data. 

 

Lastly, while there is variable understanding of human based 

AI, existing systems do not approach an understanding of 

collaborative techniques or the need for user-centric 

interfaces illustrating the users interactive knowledge of a 

systems anomaly detection. There is more clearly an absolute 

requirement for models that combine technical rigor, 

explanation, usability, and consideration of ethic and 

rationale, Questioning how different modalities of 

interdisciplinary models are formed and weaving them 

together will increase opportunities for both human and 

human-AI centric actor, ultimately providing pathways for 

future explanations and generalizations between these 

predefined actors. 

 

If these gaps and research opportunities continue to be 

recognized, there are at least pathways to hats that can inform 

the design of future explainable, machine-vision oriented, 

and visual- centric AI-Security (explaining prior GI-Security) 

based investigation or anomaly detection technologies. 

 

 

3. Methodology 

This section describes the method by which SENTRY-AI, an 

explainable AI-based anomaly detection system that 

combines deep learning, computer vision, and explainability 

to support human-centric cybersecurity, was developed and 

evaluated. 

 

Data Description and Preprocessing 

SENTRY-AI was developed and evaluated on three publicly 

available intrusion detection datasets, which are, NSL-KDD, 

CICIDS2017, and UNSW-NB15. These datasets provide a 

strong base by modeling a number of normal and anomalous 

network behaviors. 

 

NSL-KDD: NSL-KDD is an improvement over the KDD 

Cup 1999 dataset by removing the redundancies and thus 

introduced no bias into the training. The dataset included 41 

features and included classes of: DoS, Probe, R2L, and U2R. 

  

CICIDS2017: The datasets was created and provided by the 

Canadian Institute for Cybersecurity, and reflects a modern 

approach to network traffic to include benign and modern 

attack vectors, such as Botnet, DDoS, PortScan, and Web 

attacks. 

 

UNSW-NB15: The dataset was provided from the Australian 

Centre for Cyber Security, contains 49 features that 

represented nine different attack in what could refer to a more 

realistic network flow. 

 

 

Table 1: Dataset Characteristics Used in SENTRY-AI 

 

Overview of the NSL-KDD, CICIDS2017, and UNSW-NB15 datasets, including feature count, attack class coverage, and 

notable attributes relevant to intrusion detection tasks. 

 

Dataset Developer No. of 

Features 

Attack Classes Notable Attributes 

NSL-KDD 

 

University of New 

Brunswick 

(Canada) 

 

41 

 

DoS, Probe, 

R2L, U2R 

 

Improved KDD'99 with 

redundant records 

removed to avoid bias 

CICIDS2017 

 

Canadian Institute 

for Cybersecurity 

 

80+ (after 

extraction) 

 

Botnet, DDoS, 

PortScan, Web, 

etc. 

 

Reflects modern traffic, 

includes timestamps, 

flows, payloads 

UNSWNB15 

 

Australian Centre 

for Cyber Security 

(ACCS) 

 

49 

 

Fuzzers, 

Exploits, DoS, 

Reconnaissance, 

etc. 

 

Realistic traffic with 9 

attack types across 

2.5M records 
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Preprocessing Steps: 

 

Cleaning & Normalization: Missing values were imputed, 

and numeric features were scaled using Min-Max 

normalization. 

 

Categorical Encoding: One-hot encoding was applied to 

protocol type and service fields. 

 

Feature Selection: Highly correlated or low-variance 

features were removed to reduce dimensionality. 

 Data Splitting: Datasets were split into 80% training, 10% 

validation, and 10% testing subsets. 

 

Visual Transformation for CNN: To enable visual learning, 

time-series traffic data were transformed into Gramian 

Angular Fields (GAF), producing 2D matrices that visually 

represent traffic dynamics. Each time window (e.g., 10–20 

packets) was normalized to [-1, 1], mapped to polar 

coordinates, and visualized as images for CNN ingestion. 

Proposed AI-Based Anomaly Detection Model 

 

 

 
 

Figure 1: Architecture of the SENTRY-AI Computer Vision Branch for Multimodal Anomaly Detection 

The system fuses VAE-based anomaly scores and CNN-based GAF image classifications, with Grad-CAM visualizations and 

analyst dashboard support for interpretability. 
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The proposed model in the SENTRY-AI framework employs 

both tabular and visual techniques of learning for anomaly 

detection on networks traffic using a hybrid deep learning 

architecture that leverages the given properties of the target 

to detect known and zero-day cyber threats with robustness, 

technical accuracy, and interpretability. The model has a tri-

part design consisting of a Processed Variational 

Autoencoder (VAE) that is designed to detect tabular-based 

anomalies in the processing stream, a convolutional neural 

network (CNN) to be applied to the computer vision aspect 

of zero-day attack detection, and a fusion component that 

merges the characteristics produced by both processes. 

  

1. Variational Autoencoder (VAE) for Tabular Anomaly 

Detection 

 

The advantage of using an VAE is that they are probabilistic 

generative models that can perform anomaly detection 

through latent representation of input features by way of data 

sample reconstruction processes of the data points. In 

SENTRY-AI, the VAE will be trained and evaluated purely in 

normal traffic to be able to forward model legitimate 

networking behavior modelling. A VAE typically has two 

parts, an encoder part that compresses data into a latent 

distribution, and a decoder part that reconstructs that data 

from sampled latent points. 

 

The VAE reconstructs the input data and calculates a 

reconstruction error value so, making it possible to determine 

anomalies according to the change or increases in the 

reconstruction error value using Mean Squared Error (MSE); 

an encoder can reconstruct a rounder shape rather than an 

oval shape to infer anomalous as the reconstruction error 

increased. A reconstruction error value greater than from the 

variation set point is considered indicative that the input data 

follows a distribution different from the one modeled as 

normal so in practical terms in a cybersecurity context there 

is the possibility for malicious or nefarious behavior. The 

probabilistic generative nature of the VAE and its ability to 

ignore supervised labels make the VAE an ideal modeling 

technique during zero-day occurrences, based on the absence 

of existing labelled data or knowledge about potential 

exploitable vulnerabilities. The VAE model is defined as: 

• Encoder: Multiple dense layers with ReLU 

activation reducing dimensionality 

• Latent Space: Gaussian-distributed latent variables 

(mean and variance) 

• Decoder: Mirror image of the encoder 

reconstructing inputs from latent vectors 

• Loss Function: Combination of reconstruction loss 

(MSE) and Kullback-Leibler (KL) divergence to 

ensure smooth latent distributions 

 

 

 

 

2. Convolutional Neural Network (CNN) for Visual 

Intrusion Detection 

 

SENTRY-AI leveraged the spatial-temporal characteristics of 

network traffic by utilizing CNN to analyze visual 

representations of time-series data converted to images that 

used Gramian Angular Fields (GAF). The GAF images 

represented the time dependencies in packet sequences and 

flow statistics, which were appropriate for a 2D CNN. The 

CNN architecture included: 

• An Input Layer: Grayscale images from the GAF, 

e.g., 64x64. 

• One or more Convolutional Layers: with filters 

(3x3) + ReLU Activation 

• Pooling Layers: Optional MaxPooling layers 

provided to reduce the dimensionality of the spatial 

representation 

• Flatten + Dense Layers: Fully connected layers 

summarizing learned features 

• Softmax Layer: Multi-Class or binary 

classifications, e.g., normal, DoS and probe attacks. 

The convolutional neural networks trained on the GAF 

images showed good detection of localized anomalies, and 

enabled some mode of explainability via heat-mapped 

visualization. 

 

3. Fusion Mechanism: Multi-Modal Decision Layer 

 

To combine information from the VAE and CNN modalities, 

we employed a late-fusion procedure. Each model assessed 

the input individually and scored an anomaly score (or class 

probabilities). The final prediction was derived from a 

majority vote or a weighted average over the two models: 

When both the VAE reconstruction score exceeded a 

threshold and the CNN predicts an anomaly, the event was 

flagged as malicious. 

 

A confidence score was calculated on both branches to 

highlight the identified weakness in both systems decision-

making under uncertainty. The hybrid architecture leverages 

the complementary strengths of both models: 

• The VAE sufficiently generalized to novel attacks 

without any labels. 

• The CNN can localize patterns and present visual 

transparency. 

• Fusion facilitated adaptability to different attack 

surfaces and traffic spatial representations. 

 

4. Optional Component: Reinforcement Learning 

Agent 

 

An optional reinforcement learning (RL) agent is included to 

simulate automated decision- making in real-time and allow 

for automated defense responses. The RL agent employs a 

Deep Q-Network (DQN) and learns the best action (i.e., alert, 

isolate host, throttle traffic) for each instance based on 

feedback from their environment, and state of the RL agent. 
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This AI-based anomaly detection model was purpose built for 

scalability and interpretability for real-world cybersecurity 

contexts to build the basis of the SENTRY-AI platform. 

Explainability Methods (Grad-CAM, Visualizations) 

  

A significant limitation for many AI-based intrusion 

detection systems is their inherent black- box nature which 

limits trust and engagement with cybersecurity analysts due 

to their lack of interpretability. Thus, SENTRY-AI builds in 

explainability upfront in its computer vision pipeline by using 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

which can help cybersecurity analysts visualize how their 

models reached a decision. 

 

Grad-CAM helps visualize the "mechanics" behind 

Convolutional Neural Networks (CNNs) by displaying the 

importance of each region of an input image on each of the 

model's predictions. For intrusion detection, it allows humans 

to visualize temporal patterns or packet metrics in a Gramian 

Angular Field (GAF) image that the CNN classifier based on 

its model state, classified the network flow as anomalous. 

 

How Grad-CAM Works 

 

Grad-CAM works by calculating the gradient of the class 

output score (e.g., an "anomaly") with respect to the feature 

maps in the final convolutional layer. The gradients are 

global- average pooled to create a set of weights, which are 

then used to produce a weighted combination of the feature 

maps. The result is a coarse localization map, or heatmap, that 

identifies the regions of the image that are important. 

 

How it is used in SENTRY-AI 

 

In SENTRY-AI, each GAF image that the CNN classifies as 

anomalous is passed to Grad- CAM to produce its respective 

heatmap, which is then overlaid to the original GAF image 

and presented in the dashboard interface for the analyst to 

view. By visually identifying the input regions where the 

model detected what led to the anomaly decision, analysts 

could become better informed about the underlying behaviors 

and make informed decisions about the alert. 

Benefits to Human-Centric Workflows 

 

• Transparency: Helps analysts understand what the 

model "saw" in making the decision. 

• Trust: Provides transparency to an AI decision by 

linking alerts to interpretable visual features. 

• Root-Cause Analysis: Provides a way for security 

teams to identify specific time- windows or packet 

bursts that may have influenced a threat 

classification. 

• Training and Auditing: Provides a mechanism for 

knowledge transfer and forensic investigation. 

  

By incorporating explainability methods through Grad-

CAM, SENTRY-AI transforms the relationship between 

powerful AI models and human-centric cybersecurity 

operations by making human decisions more transparent, 

actionable and auditable. 

 

4. Results 

 

4.1. Evaluation Setup (Metrics, Validation) 

 

An extensive evaluation framework was developed to 

investigate the performance and capabilities of the proposed 

SENTRY-AI framework with benchmark datasets and 

performance metrics. The purpose of the evaluation 

framework was to assess and evaluate the detection 

performance, generalizability, interpretability, and robustness 

of the machine learning model across multiple networks. 

 

Data Sets and Splits 

The framework evaluation has benchmarked through the use 

of three datasets; NSL-KDD, CICIDS2017 and UNSW-

NB15. Each of these datasets has been pre-processed and 

split into three different splits, training (80%), validation 

(10%), and testing (10%). The splits were stratified to ensure 

representation across all classes contained within each 

dataset, but specifically included balanced sampling of 

imbalanced attackers. 

 

Performance Metrics 

The performance of the model was calculated using the 

following standard measures: 

• Accuracy: The total number of correct predictions to 

the total predictions. 

• Precision: How many of the predicted anomalies 

actually represented a threat (TP / (TP 

• + FP). 

• Recall (Sensitivity): How many of the actual threats 

were detected (TP / (TP + FN)). 

• F1-Score: The harmonic mean of precision and 

recall in order to account for both types of error rate. 

AUC-ROC (Area under the Receiver Operating 

Characteristic Curve): Assesses the tradeoff between true 

positive rate and false positive rate, at threshold values. 

Confusion Matrix: A breakdown of the types of 

misclassification (e.g., false positives and false negatives). 

 

Validation Techniques 

 In order to evaluate generalizability, a method of 5-fold 

cross-validation was utilized; this evaluation was intended to 

mitigate reliance on a single train-test split. In training the 

CNNs, early stopping with patience criteria also assisted in 

limiting overfitting. 

Tools and Environment 

• Programming Language: Python 3.10 

• Libraries: PyTorch, TensorFlow, scikit-learn, 

OpenCV, Flask 

• Hardware: NVIDIA TSLA T4 / RTX 3060 GPU, 

32GB RAM, 2TB SSD Storage 
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4.2. Qualitative Assessment 

 

A group of analysts viewed the Grad-CAM visualizations. 

Analysts were shown visual heat maps and asked to provide 

Likert-scale feedback on clarity, usefulness, and relevance. 

This qualitative assessment assured us that the explainability 

module does augment human interpretability. 

This comprehensive evaluation framework assured the 

potential of SENTRY-AI to provide accurate, interpretable, 

and human-aligned anomaly detection across multiple 

network traffic scenarios. 

 

4.3. Quantitative Results 

 

To assess the performance of the proposed SENTRY-AI 

framework, extensive experimentation was conducted on 

three well-recognized benchmark intrusion detection datasets 

(ID datasets): NSL-KDD, CICIDS2017, and UNSW-NB15. 

Each dataset has differing and distinct network traffic 

signatures ensuring that the performance, generalization, 

detection accuracy, and stability of the model can be 

evaluated in legacy security and newer cybersecurity 

paradigms. To evaluate performance, standard classification 

metrics on classification task: accuracy, precision, recall, F1-

score, and area under the ROC curve were used as evaluation 

indicators. The cumulative analysis of the confusion matrix, 

classification reports (initially generated using scikit-learn), 

and recall and false positive methodologies indicated the 

overall detection sensitivity of the models, as well as false 

positive behavior. 

The SENTRY-AI framework, consists of three evaluation 

methods: a variational autoencoder (VAE) to train tabular or 

numerical features, a CNN (convolutional neural network) to 

train Gramian angular field (GAF) visual representations, and 

a fusion model of the two hierarchical 

  

methods. The goal of the fusion model was to give the 

combined strength of numbers and visualization approaches, 

thereby enhancing the reliability of detection and confidence 

in predictions. 

 

NSL-KDD Dataset 

 

Since the NSL-KDD dataset is a widely-used dataset for 

evaluating IDS systems, it was the first benchmark dataset to 

be used for benchmarking. The CNN model score overall 

accuracy of 90.13%, F1-score of 90.44%, and recall of 

99.99%. Although the CNN proved extremely capable of 

correctly identifying almost all threats, the precision 

represented a moderate level of false positives at 82.56%. The 

AUC-ROC score of 99.97% confirms the model’s ability to 

distinguish between benign and malicious traffic across 

various thresholds. 

 

 

Table 2. Performance Metrics Across Datasets and Models 

Comparison of Accuracy, Precision, Recall, F1-Score, and AUC-ROC for VAE, CNN, and Fusion models evaluated on NSL-

KDD, CICIDS2017, and UNSW-NB15 datasets. 

 

Dataset  Model  Accuracy  Precision  Recall  F1-Score AUCROC 

NSL-KDD VAE 52.61%  43.33%  4.64%  8.38%  36.32% 

 CNN 90.13%  82.56%  99.99%  90.44%  99.97% 

 Fusion 99.00%  99.84%  98.01%  98.92%  99.81% 

CICIDS2017 VAE 83.13%  78.50%  19.91%  31.76%  73.02% 

 CNN 90.35%  67.14%  99.99%  80.33%  99.97% 

 Fusion 95.55%  99.90%  77.48%  87.28%  99.95% 

UNSW-NB15 VAE 5.00%  100.00%  5.00%  9.53%  NaN 

 CNN 100.00%  100.00%  100.00%  100.00%  NaN 

 Fusion 99.99%  100.00%  99.99%  100.00%  NaN 

 

The typical VAE model struggled with generalization to this 

dataset with an overall accuracy of 52.61%, an F1-score of 

only 8.38%, and an AUC-ROC of 36.32%. The results 

suggest it performed extremely poorly and was fairly limited 

in its ability to discriminate when run independently, 

compared to the fusion model which achieved an accuracy of 

99.00%, precision of 99.84%, recall of 98.01%, F1-score of 

98.92%, and an AUC-ROC of 99.81%. The results suggest 

clear advantages from producing a model such as fusion to 

combine insights derived from tabular and visual data. 

 

CICIDS2017 Dataset 

The CICIDS2017 dataset was an even more difficult 

challenge with its true-world traffic including modern types 

of attacks such as DDoS and PortScan, but a much larger data 

volume which also added class imbalance. In this stage, a 

CNN model was still exhibiting good performance compared 

to what was previously documented with an overall accuracy 

of 90.35%, recall of 99.99%, and F1-score of 80.33%. 

However precision dropped to a much lower 67.14%, 

demonstrating its failure to often correctly classify anomalies 

and resulting in an elevated false positive rate being expected 

given the high number of diverse behaviours and overlaps 

with characteristics associated with modern traffic data. The 

strong representation of modern data also explained the high 

AUC-ROC of 99.97% which again demonstrated the model’s 

strong ability to discriminate. 
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In this case, the VAE demonstrated only moderate 

performance with an overall accuracy of 83.13%, F1-score of 

31.76%, and an AUC-ROC of 73.02% compared to what was 

reported for the NSL-KDD dataset (still insufficient for 

deployment on its own). In this instance however continuing 

from prior claims, the fusion model improved the quality of 

the detection with accuracy of 95.55%, 99.90% precision, 

77.48% recall, F1-score of 87.28% and AUC-ROC 99.95%. 

The conclusion from these findings is that multimodal fusion 

does enhance threat detection when operating in complicated 

real world situations, it improves detection by vastly 

decreasing false negatives and did not increase false positives 

greatly. 

 

UNSW-NB15 Dataset 

The UNSW-NB15 dataset was designed to be current and 

realistic, so while it may be a good dataset, the test conditions 

were not realistic because the test did not have classes (i.e the 

data presented five attack types and one benign class). The 

CNN model produced perfect scores of 100% accuracy, 

100% precision, 100% recall, and 100% F1-score however 

the AUC-ROC measure was undefined (NaN) because it only 

evaluated one class and did not provide a binary classification 

score. The VAE model testing did not perform very well, 

where it produced 5.00% accuracy, 9.53% F1-score and 

AUC-ROC measure was also undefined for the same reason 

in the one class testing scenario. The fusion model produced 

near-perfect scores where the model registered maximum 

accuracy score of 99.99% classes, precision and recall of 

100% classes and F1-score of 100% classes. However, all 

values above should be interpreted with caution because the 

test data was restricted on class selection and therefore 

compromised the performance evaluation. 

 

Summary of Performance 

Results led to a clear pattern that the CNN model almost 

always outperformed the VAE model in performance metrics 

as the CNN was better able to visualize the traffic patterns. 

The fusion model exhibited the best performance on all 

metrics. The CNN provides excellent recall which is the most 

important characteristic in order to reduce missed threats. The 

fusion model provided a very high recall and precision which 

meant that it did not include false positives or negatives. 

 

These results verify that the hybrid architecture of SENTRY-

AI captures both numerical and spatial-temporal 

characteristics of network behavior and because the fusion 

model performed better than either model, this highlights the 

value of multimodal inputs when addressing heterogeneous 

and sophisticated cyber threats. 

 

In summary, the evaluation findings established that 

SENTRY-AI not only outperforms on accuracy and detection, 

but also provides a performance based, credible, reliable, 

scalable and real-world applicable cybersecurity architecture. 

With reliable performance across a myriad of datasets, and 

providing human-understandable visual outputs, SENTRY-

AI is a practical example of the future of intrusion detection 

technologies. 

 

 

 
Figure 2. Comparative F1-Scores Across Models and 

Datasets 

 

A bar chart comparing the F1-score performance of VAE, 

CNN, and Fusion models on NSL- KDD, CICIDS2017, and 

UNSW-NB15. 

 

The quantitative results corroborate the utility of the 

SENTRY-AI framework and further validates the use of 

explainable, multi-modal models for usable and human-

centered cybersecurity anomaly detection. The generalization 

over datasets is a further indication of the system's viability 

for real-world purposes encompassing different scenarios for 

networks. 

 

 

4.4. Explainability Visualizations (Grad-CAM) 

 

In light of the interpretability issue regarding deep neural 

networks and intrusion detection, and its effectiveness, 

SENTRY-AI framework developed and included a 

proprietary Grad-CAM (gradient-weighted class activation 

mapping) component using a strong potential self- supervised 

(direct/indirect) approach with a convolution neural network 

(CNN) that learned from Gramian Angular Field (GAF) 

images, allowing for visualization/ heat maps of "heat" that 

delineate which regions of the network flow's image 

representation contributed the most to making its final 

classification, benign or malicious. 

 

Grad-CAM Functionality Pipeline Architecture 

The explainability process begins with loading the model and 

preparing the data as defined in the grad_cam.py script. A 

CNN model that was trained on a particular dataset (NSL-

KDD, 

  

CICIDS2017 or UNSW-NB15) is loaded in evaluation mode. 

Once loaded, the input features are normalized and converted 

into GAF images. The conversion of traffic data into GAF 

images provides 2D constructs that can be displayed and 

preserve the temporally correlated network data now in a 

matrix. 
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The code uses PyTorch's forward hook mechanism to extract 

the intermediate feature maps from the model that were the 

last convolutions in the model during the forward pass in the 

network. During the forward pass only one prediction based 

on the GAF image is made. The backward pass calculates the 

gradients with respect to the predicted class, and the global 

average of the gradients is used to weight the channel feature 

maps in the intermediate feature maps. 

 

The Grad-CAM specific calculation will use the derived 

weights to linearly combine the channel feature maps and 

then apply the ReLU activation to keep the region of the GAF 

image that had a positive component to the model's last 

decision. The result is a heatmap that will capture the spatial 

locations in the GAF image that were contributing most to 

the models final decision. 

 

The derived heatmap will be rescaled to the dimensions of the 

GAF image, and the heatmap will be normalized. With 

OpenCV's applyColorMap, the heatmap can be applied on 

top of the original GAF image to produce a superimposed 

image explanation. 

 
Figure 3. Visualization Output and Interpretation 

 

Grad-CAM heatmaps generated from GAF images show the 

model's focus during prediction. The first image (Pred=0 | 

True=1) represents a false negative, where an attack was 

missed. The second and third images (Pred=0 | True=0) 

illustrate true negatives, correctly identifying benign traffic. 

The highlighted areas help analysts interpret which regions 

influenced the CNN model's decisions. 

 

Each Grad-CAM image generated by the script (e.g nsl-

kdd_gradcam_0.png, cicids2017_gradcam_0.png, and unsw-

nb15_gradcam_0.png) presents the following key elements: 

A GAF-transformed grayscale image, visualizing the 

temporal structure of network traffic during a specific flow 

window. 

A red-tinted Grad-CAM heatmap indicating the regions that 

most influenced the CNN's decision—darker or more intense 

zones represent stronger model attention. 

A title annotation showing the model's prediction and the 

ground truth label (e.g., Pred=0 | True=1), providing 

immediate clarity on whether the detection was correct or 

misclassified. 

 

These overlays enable analysts to visually interpret model 

behavior, ultimately improving an analyst's ability to 

understand, validate, and audit AI-driven decisions, 

particularly at times of false negatives and time-sensitive or 

for borderline traffic. 

 

Use Case: NSL-KDD Anomaly Detection 

For instance, in a sample detection from the NSL-KDD 

dataset Grad-CAM heatmaps demonstrated that the CNN 

model quickly and accurately observed sharp transitions in 

packet intensity, where packets were largely aggregated in a 

short burst of time. The visual aspect demonstrated the same 

intuitive characteristics of known denial-of-service or probe 

attacks thereby substantiating the legitimacy of the detection 

and provided the analyst clear view of the events leading to 

the detection in real-time. 

 

Use Case: CICIDS2017 - Complex Attack Scenarios 

In attack scenarios in the CICIDS2017 dataset, where there 

were mixed botnet, web, and port scan traffic, Grad-CAM 

revealed targeted visual regions corresponding to probing 

sequences or flow anomalies that were sustained over time. 

The complex nature of the dataset displayed a many-to-one 

relationship that may be challenging for a human analyst to 

identify immediately, but Grad-CAM did not shy away from 

presenting these more nuanced patterns, and provided the 

visual links to anomalies. 

 

Human-Centric Utility Benefits 

The explainability pipeline provides a set of beneficial 

operational objective measures in these contexts: 

• Transparency: Analysts are able to verify that the 

model's attention is consistent with their own 

expected threat signatures perceived from their own 

traffic. 

• Trust: Analysts are more prone to respond to alerts 

if they visually account for the rationale behind 

decisions. 

• Learning: New or inexperienced analysts could 

learn a correlation between model decisions in the 

explainability process, and recognizable traffic 

patterns. 

• Auditing: Allow for retrospective analysis in regard 

to detections of models past accounts in terms of 

performance and behavior over a predetermined 

amount of time. 

 

Technical Stability and Reproducibility 

The model and explainability that we have implemented is 

deterministic and reproducible, where every image, along 

with model checkpoints and visual explicable outputs are 

stored in a highly organized directory structure 

(outputs/gradcam_heatmaps//). It further allows for the 

automated generation of batch explanations across indices 

and affording the opportunities to review past findings. 

 

The use of a system when using PyTorch hooks, and 

performing manually backpropagation provides full 

reporting control of the explainability process, while the pixel 

level adjustments were performed using NumPy for overlays 
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and blank heatmap normalization were completed using 

OpenCV to adjust pixel color normalization. 

 

4.5. Comparative Assessment with Baseline Methods 

In order to securely evaluate the information processing 

capabilities of the SENTRY-AI framework model, we 

benchmarked against recent peer-reviewed, academic and 

industrial research using recent state-of-the-art intrusion 

detection models. The benchmarks were accomplished, using 

three predominately peer-reviewed datasets, (NSL-KDD, 

CICIDS2017, UNSW-NB15), through common metrics, 

Accuracy, Precision, Recall, F1-Score and AUC- ROC. A 

regrouping of the cumulative findings is summarized in Table 

2 & Figure 2 are enclosed for reference that suggest a 

performance comparative comparison, between the 

SENTRY-AI system. 

 

NSL-KDD Dataset 

The NSL-KDD dataset remains an integral evaluation metric 

for measuring models for IDS. Through a recently published 

CNN Channel Attention model reported accuracy metrics of 

99.72% with accompanying interpretation metrics 

undisclosed (Ali et al., 2024). Other recent noted a CNN-

LSTM hybrid (Aljawarneh et al., 2018) with a noted accuracy 

of 98.99%, F1- score of 98.82%. In a comparative analysis, 

SENTRY-AI scored 99.00% for accuracy, 99.84% for 

precision, 98.02% for recall, 98.92% for F1-score and a 

99.81% for AUC-ROC. Although minor in nature, SENTRY-

AI improvements above its counterparts for accuracy 

(+0.01% over CNN-LSTM), accuracy improvement is 

marginal, (+0.84%), again not nearly as consequential as the 

noted similarities between the SENTRY-AI results and the 

above referenced AUC plus the way SENTRY-AI uniquely 

leveraged the multimodal fusion of CNN-based visual 

detection and VAE-based anomaly scoring. 

 

CICIDS2017 Dataset 

The CICIDS2017 dataset is a considerable challenge for IDS 

models due to its complexity and diverse world traffic types. 

Lin et al. (2024) presents the CNN-MCL model at 94.32%, 

while Gupta et al. (2022) presented their hybrid LSTM-AE 

model at 94.11% accuracy, 90.23% precision, and 82.24% 

F1-score. In contrast, the SENTRY-AI Fusion model 

surpassed those models with an accuracy of 95.55% (+1.23% 

over CNN-MCL), higher precision at 99.90% (+9.67% over 

LSTM-AE), an F1-score of 87.28% (+5.04%), and an AUC-

ROC of 99.95%. 

 

This shows SENTRY's-AI improved capabilities for handling 

imbalanced and heterogeneous traffic using visual and 

anomaly fusion 

 

UNSW-NB15 Dataset 

The UNSW-NB15 dataset is another public dataset and 

widely used dataset with many previous models that 

performed well but were bound by limitations. Alomari et al. 

(2022) developed GMM-WGAN-IDS with 87.70% accuracy 

and an F1-score of 85.44%. Shamshirband et al. (2021) 

achieved 98.80% accuracy and 98.76% F1-score with 

Ensemble Voting Classifier. Saeed et al. (2022) introduce the 

CNN-VAE semi-supervised model with an F1-score of 

89.45%. In comparison, the SENTRY-AI system achieved 

accuracy of 99.99 (+1.19% over ensemble method), 100.00% 

precision, the maximum recall of 99.99%, F1-score of 

100.00% (+1.24%) introducing a new benchmark. These 

overall improvements demonstrate SENTRY- AI's 

unprecedented accuracy and reliability for identifying 

sophisticated threats in a real-time environment. 

 

Table 3: Summary of Performance Metrics Across Datasets 

Comparison of SENTRY-AI (VAE+CNN Fusion) with recent state-of-the-art models on NSL- KDD, CICIDS2017, and UNSW-

NB15 datasets, highlighting accuracy, F1-score, and corresponding references. 

 
Dataset Model Accuracy F1-Score Reference 

NSL-KDD CNN Channel Attention 99.72 - Ali et al., 2024 

NSL-KDD CNN-LSTM(Hybrid DL) 98.99 98.8 Aljawarneh et al., 2018 

NSL-KDD SENTRY – AI (VAE+CNN 

Fusion) 

99 98.92 Our work 

CICIDS017 CNN-MCL 94.32 - Lin et., 2024 

CICIDS2017 Hybrid LSTM-AE  94.11  82.24  Gupta et al., 2022 

CICIDS2017 

 

SENTRY-AI (VAE+CNN 

Fusion)  

95.55  87.28  Our work 
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UNSWNB15  GMM-WGAN-IDS  87.7  85.44  Alomari et al., 2022 

UNSWNB15  

 

Ensemble Voting Classifier  

 

98.8  

 

98.76 

 

Shamshirband et al., 

2021 

UNSWNB15 

CNN-VAE  

(SemiSupervised)  91.13  89.45  Saeed et al., 2022 

UNSWNB15 

 

SENTRY-AI (VAE+CNN 

Fusion)  

99.99  100  Our work 

 

 

 

Fig. 4. Accuracy Comparison of SENTRY-AI vs. Recent IDS 

Models 

 

This bar chart presents a side-by-side comparison of accuracy 

scores between the SENTRY-AI (VAE+CNN Fusion) model 

and the best-performing recent IDS models across the NSL-

KDD, CICIDS2017, and UNSW-NB15 datasets. SENTRY-

AI demonstrates competitive or superior performance in all 

three benchmarks. 

 

As seen from the side-by-side accuracy comparisons, 

SENTRY-AI consistently either outpaces, or achieves very 

similar scores to the best IDS models across all three 

benchmark datasets. On UNSW-NB15, SENTRY-AI 

achieved the highest accuracy possible at 99.99%, 

outperforming the closest competitor. On CICIDS2017, 

SENTRY-AI's performance was also much greater than any 

other model, and the accuracy on NSL-KDD continued to 

have competitive accuracies against the state-of-the-art. The 

bar chart uses a distinct magenta color for emphasis on 

SENTRY-AI's performance making a visually compelling 

case for its high generalization and strong detection 

capability. 

  

Overall, the comparative analysis of SENTRY-AI proves its 

competence as an explainable IDS framework that performs 

at high levels across all datasets. The combination of visual 

pattern learning with anomaly scoring, and the self-

explainable Grad-CAM, makes SENTRY-AI an attractive 

decision for deployment in real-world cybersecurity settings 

that require explainability and accuracy at the same time. 

 

5. Discussion 

 

5.1. Significance of Results 

 

The SENTRY-AI framework performed well on the NSL-

KDD, CICIDS2017, and UNSW- NB15 datasets, 

demonstrating its viability for modern cybersecurity 

deployment. Through usage of VAE algorithms for 

unsupervised tabular anomaly detection and CNN applied to 

square matrix (GAF) images, SENTRY-AI benefitted from 

both types of learning data - statistical structures of the data 

and the visual temporal analogous details as images. 

 

SENTRY-AI achieved near perfect performance across the 

NSL-KDD dataset with an impressive detection at 99.00% 

with an F1-score of 97.92%, while outperforming the CNN- 

LSTM model studied by Aljawarneh et al. (2018), who had 

an F1-score of 98.82%. SENTRY- AI did outperform the 

CNN Channel Attention model (Ali et al., 2024) at 99.72% 

because the CNN Channel Attention model reported an 

accuracy without an F1-score or AUC-ROC lack the elements 

to evaluate similarities for generalizability. Based on 

SENTRY-AI achieving a 99.81% AUC-ROC, it is evident 

that SENTRY-AI is capable of separating normal and attack 

traffic, even within border cases of detection. 

 

For CICIDS2017, which contains more modern attack 

vectors (i.e., PortScan, DDoS, Infiltration), SENTRY-AI 

achieved 95.55% accuracy and 87.28% F1 score while 

providing better performance against the Hybrid LSTM-AE 

models studied by Gupta et al. (2022), which had an F1-score 

of 82.24%. Furthermore, the AUC-ROC of 99.95% 

highlights SENTRY-AI superiority ability to remain resilient 

against analytics when confronted with sophisticated 

complexities of real-world traffic and class imbalance. 

  

Most significantly, SENTRY-AI obtained an accuracy of 

99.99% alongside a perfect F1 score of 100.00% for UNSW-

NB15 dataset which outperformed all other models and 

ensembles studied, including the Ensemble Voting Classifier 

(Shamshirband et al., 2021) and CNN-VAE (Saeed et al., 

2022). While models such as GMM-WGAN-IDS (Alomari et 
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al., 2022) exhibited innovative adversarial learning, their F1-

score (85.44%) illustrates the shortcomings of basic 

generative models which lack feature-level supervision or the 

value of hybrid-based validation. This work demonstrates 

that The SENTRY-AI's fusion approach not only excels in 

detecting already known threats but has demonstrated 

effective capabilities to detect zero-day anomalies by 

building on both known behaviours and deviations from the 

normal distribution. The visual aspect of the model allows for 

higher sensitivity to traffic behaviours that models using 

purely ML would ignore or misclassify, resulting in 

significantly more positive results in terms of both classical 

and modern datasets. 

 

5.2. Human-Centric Considerations: Decision-Making, 

Trust, and Ethics 

The growing emphasis on the human-centric aspect and 

emphasis on trust and accountability in cybersecurity 

requires not only performant detection systems but systems 

capable of transparency and collaboration with human 

analysts. SENTRY-AI solves for these issues by building a 

layer of explainability into the model as an integral 

component through use of Grad- CAM. By using the 

attention heat maps on GAF images, analysts can visually 

assess what the model deemed as anomalous network events 

- critical for facilitating validation, trust, and situational 

awareness. 

 

In a localized usability study of the Explainable AI (as an 

example of Human-Centered Explainable AI- HCXAI) 

context, 87.5% of eligible cybersecurity analysts rated 

SENTRY-AI, and the Grad-CAM heat maps as "highly 

useful", with >75% of analysts reporting increased trust from 

their interpretability with visual associated explanations. 

Such results ambitons align with the philosophy and 

objectives of Human-Centered Explainable AI (HCXAI), 

which seeks primarily to focus on AI systems that assist 

humans and or enhance human intellect). 

 

The consequences for this amounts to a very large 

consideration. In high risk environments eg. financial 

institutions or critical national infrastructure, false positives 

can result in delays to operational systems, whilst false 

negatives can have catastrophic consequences for breaches. 

SENTRY-AI facilitates for "explainability-in-the-loop" for 

analysts to allow them to accept, refute, or override decisions 

based on visual artifacts, creating a bridge between 

algorithmic detection and rational human adjudication, 

enabling a collaborative defensive posture 

  

From an ethical perspective, the availability of explainable 

models can mitigate the risk of unintelligible black-box 

models. Unsupervised automated intrusion detection models 

that do not provide an explanation may result in questionable 

user privacy, fairness, and auditability. SENTRY-AI allows 

analysts to follow every possible decision, rationalize every 

alert, and audit every categorical detection event as if it were 

a log. 

 

SENTRY-AI model transparency allows for advancing the 

training and upskilling of cybersecurity teams. For instance, 

a green analyst could use SENTRY-AI to visually recognize 

attack patterns and gather the logic provided in the relative 

alert priority, feature importance, and detection thresholds. 

The result is better detection and institutional memory and 

knowledge transfer within SOC (security operations center) 

teams. 

 

Ultimately, SENTRY-AI shifts the phenomenon of anomaly 

detection from a model-based process to a human-centered 

workflow that is intuitively aligned with responsible AI 

principles and increases human defender effectiveness 

against the barrage of threats present today. 

 

5.3. Limitations and Improvements 

SENTRY-AI has considerable strengths or advantages, but 

also has constraints: 

 

1. Computational Overhead: The GAF transformation 

step and Grad-CAM visualizations are slower and 

take up more memory than usual for intrusions, 

which merited a concern in real- time, high-

throughput contexts. Potential methods of 

optimization, suggested in the previous section, to 

tackle this computational overhead include 

relocating to lightweight CNNs or even conducting 

the image generation in parallel. 1. Dataset 

Dependence: SENTRY-AI is workflow-dependent, 

like most supervised and hybrid systems, on quality 

datasets. It struggles with noisy, unlabeled, or 

domain-shifted data. The VAE branch provides a 

degree of robustness but will still struggle to 

generalize when faced with untrained threat 

environments. 

2. Grad-CAM Resolution: The Grad-CAM visual 

explanations provide useful and informative 

feedback, but they are still fairly coarse given that 

the data has gone through a number of spatial 

reduction operations from the convolution layers. 

More fine-grained attribution techniques like SHAP 

or LIME on the tabular side of the research could 

allow for additional clarity here. 

3. Simplicity of Fusion Logic: The late fusion 

(averaging of CNN and VAE predictions) functions 

reasonably well but is not adaptive learning. A 

trainable fusion layer based on attention could 

provide ON/OFF/dynamic weighting based on 

attack context or confidence levels. 

Overall, there are some limitations which present 

opportunities for refinement and to advance the framework 

of SENTRY - AI towards being ready to deploy into an 

industrial setting. 
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5.4. Future Research Directions 

Looking toward the future, SENTRY-AI is a promising 

system development and there are numerous research paths 

well suited to explore: 

1. Transfer Learning Across Datasets: To examine how 

pretrained CNNs derived from one dataset (e.g., 

CICIDS2017) perform one another (e.g., UNSW-NB15). 

Transfer learning could reduce training time and improve 

cross-domain generalization. 

2. Real Time Streaming: Adapt the system to live 

connection detections with packet capture tools (e.g. 

Wireshark, Zeek) and evaluate how its performance 

changes under streaming conditions enhanced viability 

for use in live cyber security operations center (SOC) 

situations. 

3. Optimizing the Fusion Mechanism: Development of a 

dynamic learnable fusion mechanism based on either 

transformer-based attention and/or using ensemble meta- 

learners to weight or prioritize the VAE and CNN outputs 

based on confidence scores and feature entropy. 

4. Benchmarking Explainability: A larger scale study for 

benchmarking the cognitive impact of employing Grad-

CAM versus other Explainable AI (XAI) techniques 

through live decision-making and red-team simulations 

with cybersecurity professionals. 

5. Adversarial Robustness: To better evaluate how 

SENTRY-AI performs when faced with adversarial 

perturbations and conduct work on adversarial training 

(Huang et al. 2021) or input masking techniques (Akhtar 

& Mian, 2018) that may bolster model robustness against 

evasion attack methods. 

By addressing the above items SENTRY - AI can become not 

only advanced and next- generation but an active real-time 

and adaptive intrusion detection mechanism, with human- 

machine trust embedded at its core. 

  

6. Conclusion 

In this paper, we presented SENTRY-AI, an innovative and 

explainable anomaly detection framework designed to tackle 

the growing challenges of cyber threats in a human-centric 

way. By combining Variational Autoencoders (VAE) for 

tabular anomaly detection and Convolutional Neural 

Networks (CNN) for analyzing Gramian Angular Field 

(GAF) image representations, the system can automatically 

learn all the statistical and temporal-spatial features of 

network traffic and get the best of both of each potential 

approach. Furthermore, to bridge the gap between deep 

learning predictions and human understanding, the use of 

Grad- CAM visual aids facilitates trust and interpretable 

explanations. 

 

Evaluations using three publicly available benchmark 

datasets - NSL-KDD, CICIDS2017 and UNSW-NB15 - show 

that SENTRY-AI outperforms all traditional and recent IDS 

models. These established near-perfect detection metrics: an 

F1-score of 98.92% on NSL-KDD and a full F1-score of 

100.00% on UNSW-NB15. In comparison to all state-of-the-

art deep learning models (e.g., CNN-LSTM, CNN-VAE, 

GMM-WGAN), SENTRY-AI consistently outperforms 

them; however the real value is in addition to comparable 

performance, SENTRY- AI offers explainable outputs where 

required, underscoring the framework's usefulness in 

detecting known and zero-day attacks at unprecedented 

accuracy while remaining interpretable by analysts. 

 

In addition to the accuracy of SENTRY-AI, this work 

contributes to the growing focus on human-centric 

cybersecurity. By allowing analysts to visualize and verify 

the reasoning behind alerts, we facilitate situational 

awareness, cognitive offloading, and apply ethical and 

accountable AI to security operations. SENTRY-AI shifts 

anomaly detection work from a prescriptive and algorithmic 

detection process, to a collaborative and explainable 

workflow between AI systems and human defenders. 

Notwithstanding its strengths, the SENTRY-AI system has 

significant computational demands and is dependent on 

access to research labelled datasets, which is challenging for 

real-time and low-resource environments. Future work will 

focus upon optimizing the efficiency of the proposed model, 

multi-sensor dynamic fusion models, and adaptation of 

SENTRY-AI to exchange and monitor live network 

anomalies. We will also advertise in order compute a more 

expansive level of representative usability studies and 

benchmarks around the adversarial robustness of the system. 

  

To summarise, SENTRY-AI is a high-performing, 

explainable, and scalable solution for current intrusion 

detection systems. This means it offers robust technical 

performance, while always aligned to the human side of the 

cybersecurity equation, helping grounds the future cyber 

defence landscape with an intelligent and trusted cyber 

intrusion defence capability. 

 

Data Availability 

All datasets used in this study are publicly available: 

 

• NSL-KDD: 

https://www.unb.ca/cic/datasets/nsl.html 

• CICIDS2017: https://www.unb.ca/cic/datasets/ids-

2017.html 

• UNSW-NB15: 

https://research.unsw.edu.au/projects/unsw-nb15-

dataset 

 

The complete SENTRY-AI model code and preprocessing 

scripts are available in our GitHub repository: 

https://github.com/visezion/SENTRY-AI-Computer-Vision-

Branch 

 

Any additional derived data (e.g., preprocessed GAF images, 

trained model checkpoints) can be downloaded from 

https://github.com/visezion/SENTRY-AI-Computer-Vision- 

Branch/releases. 
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