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Abstract

As cyber threats increase in sophistication and stealth,
traditional Intrusion Detection Systems (IDSs) typically
experience difficulties identifying emerging types of attacks
(e.g., zero-day attacks) because they rely on known
signatures and lack interpretability. This paper presents the
development of SENTRY-AI, an explainable, multi-modal
anomaly detection framework that integrates deep learning
and computer vision to improve cybersecurity defenses in
cyberspace. SENTRY-AI architecture employs a Variational
Autoencoder (VAE) to conduct unsupervised anomaly
detection on tabular network features, in addition to a
Convolutional Neural Network (CNN) to analyze time-series
traffic data transformed into a Gramian Angular Field (GAF).
An analysis is performed with a late-fusion approach utilizing
outputs from the two models to evaluate the efficacy and
robustness of the hybrid approach. Gradient-weighted Class
Activation Mapping (Grad-CAM) is employed to provide
visual explanations which indicate the most significant areas
of input used to make the predictions for the purpose of
human-in-the-loop decision making. The experimental work
is conducted across three intrusion detection datasets (NSL-
KDD, CICIDS2017, and UNSW-NBI15), demonstrating that
SENTRY-AI outperformed traditional machine learning and
modern deep learning-based IDS approaches. In fact,
SENTRY-AI achieved an F1-score of 98.92% on NSL-KDD,
100.00% on UNSW-NBI15, and an AUC-ROC score
exceeding 99% on all datasets.
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1. Introduction
Background & Context

The modern cybersecurity environment is characterized by
an unprecedented rise in the sophistication, number, and
variety of cyber threats. Digital transformation is prevalent
across all aspects of society and increasing reliance on
systems and networks connected with each other, increases
both vulnerabilities and attack surfaces (Almiani et al., 2020).
An increase in cyber threats, including ransomware attacks,
phishing attacks, denial-of-service (DoS) attacks, advanced
persistent threats (APTs), and zero-day exploits, is seen

across the range of cyber actors, from organized crime
operations to state-sponsored threat actors (Moustafa et al.,
2019). The increased frequency of attacks illustrates the
limitations of a well-established, traditional signature- based
intrusion detection system (IDS) that relies on reference
known patterns of cyber threats, and as a result lacks the
ability to recognize new and methodical attacks.

Methods of anomaly detection supported by artificial
intelligence (AI) and machine learning (ML), have gained
attention to deal with these obstacles. Anomaly detection
systems do not rely on signature-based approaches and detect
abnormal behavior from typical network behavior. This style
of threat detection is more proactive and flexible. Machine
learning fundamental algorithms and methods, in particular,
deep learning methods such as Variational Autoencoders
(VAEs) and Convolutional Neural Networks (CNNs), have
been proven able to detect anomalies in complex and high-
dimensional network data with higher accuracy (Mirsky et
al., 2018). The strengths of these methods are found in the
potential to learn from massive volumes of data, detect subtle
patterns, and reconfigure to accommodate instantaneous
threat environments.

Nonetheless, despite the advantages of anomaly detection
methods, traditional ML-based detection often entails a lack
of explainability. This lack of simple interpretability can
result in unexplainable predictions and an inability to trust
those predictions from a cyber intrusion analyst, which makes
implementing these systems an impediment and disadvantage
in a real environment where humans need to interpret results
and use that evidence in a meaningful way to affect important
decisions. As a result of the demand for explainable artificial
intelligence (XAI) that can answer why the Al model acted
the way it did and provide an intuitive explanation to support
its predicted output (Samek & Miiller, 2019).

Many XAI approaches like Gradient-weighted Class
Activation Mapping (Grad-CAM) can assist intrusion
analysts in converting Al model provided alerts into
interpretable visual representations to build analytical trust or
increase the usability of the model decisions.

Beyond technical performance, the study emphasizes human-
centric cybersecurity, showing that the integration of
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explainable Al (XAI) significantly enhances analyst trust,
reduces cognitive load, and supports ethical decision-making.
These results highlight the importance of visual
interpretability and multimodal learning in advancing the
next generation of adaptive, transparent, and trustworthy
intrusion detection systems.

Research Problem Statement

The central problem of this research is the transparency and
interpretability of a traditional Al- based system for detecting
incidents. When analysts cannot understand the direct
implications of a model’s prediction or output, trust in the
model will be dissipated, ultimately compromising both the
ability of an analyst to make important decisions and the
ability to mitigate a cybersecurity threat (Samek & Miiller,
2019). Becoming significantly advanced and ubiquitous
across every industry, analysts need more interpretable
systems in order to hypothesize why an activity within their
network was classified anomalously.

This research will address these issues by incorporating
computer vision techniques with explainable Al (XAI)
techniques with anomaly detection frameworks. By
visualizing network traffic as images, analysts will view
complex network data in intuitive and human-interpretable
space. Also, using XAI techniques, such as Grad-CAM, will
allow an analyst to identify which regions of the
visualizations are significant in formulating the model’s
decision which greatly enhances interpretable transparency.

Objectives and Research Questions
This research aims to develop an innovative, explainable Al-
powered anomaly detection framework that leverages
computer vision to enhance cybersecurity. Specifically, the
objectives include:
1. Developing a multi-modal anomaly detection
framework integrating Variational Autoencoders
(VAEs) and Convolutional Neural Networks
(CNN ).
2. Assessing the effectiveness of visual representations
for detecting network anomalies.
3. Applying Grad-CAM to produce interpretable
visual explanations.

The research questions guiding this study are:

1. To what extent can computer vision methodologies
enhance the performance and accuracy of anomaly
detection systems?

2. How do visual interpretability and explainable Al
influence analyst decision-making and trust in IDS
alerts?

3. What ethical considerations and practical
implications arise from integrating XAI into
operational cybersecurity practices?

Significance and Contributions
This research framework has the potential to contribute
meaningfully to the multi-discipline domains of

cybersecurity, artificial intelligence, and human-computer
interaction. The research highlights a novel, explainable, and
intuitively-oriented anomaly detection system, which
includes applied data-to-decision outputs relevant to real-life
cybersecurity issues. Security analysts who use visual
explanations will be able to read alerts quicker and more
effectively, thereby reducing incident response time, and
improving decision-making accuracy (Mirsky et al., 2018).

From an ethical stand-point, this research may be used to
highlight and promote transparency, accountability, and
trustworthiness of automated systems for cybersecurity.
Explainable models are one way to use visual data without
treating every algorithm as a black-box, which gives an
explanation for why an anomaly was considered an anomaly,
thus supporting the ethical adoption of Al in governance
processes (Samek & Miiller, 2019).

Human cognition can be enhanced by making explainable
and clear interpretability into algorithms. Analysts can
rapidly agree/disagree with model decisions, and distinguish
false positives from actual threats more efficiently, reducing
time wasted on explanations and improving operational
efficiency. The interdisciplinary dimensions of this research
have extended to human-computer interaction, where
analysts and Al can foster security operations together.

Structure Overview of Paper

The remaining sections of this paper will follow this
structure; Section 2 is a literature review, including anomaly
detection approaches, computer vision application and
explainable Al in cybersecurity. Section 3 includes the
methodology, including dataset access, network visualization
approaches, and analytic models in detail. Section 4 describes
the experimental findings, including measures of
performance and Grad-CAM visualizations. Section 5
discusses the findings and the relevance for cybersecurity
practice and outlines limitations. Finally, Section 6 provides
a conclusion, including future research possibilities and
recommendations for improvements and limitations on
practical applications.

2. Related works

Cybersecurity and Anomaly Detection

The rise of digital industries and the growing number of
connected devices, the attack surface for cyber threats has
increased exponentially. Signature-based intrusion detection
systems (IDS) are less useful for advanced and evolving
cyber threats, creating a need for detection systems that are
more adaptive and smarter (Salem et al., 2024; Hodo et al.,
2017; Brundage et al., 2018; Zhang & Ran, 2021).

Anomaly detection has become an important approach to
cybersecurity due to its aim to identify deviations to
established normal behavior. Anomaly detection is a
departure from signature-based methods as it does not depend
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on known attacks, but rather the establishment of what
normal operation looks like, it is therefore better at
identifying novel attacks or zero- day attacks (Radford et al.,
2018; Mohammadpour et al., 2020; Babaey & Faragardi,
2025; Lunardi et al., 2023). The current threat landscape
poses a serious threat as attackers seek new techniques to
evade typical security mechanisms (Bamber et al., 2025;
Talukder et al., 2024).

Since this approach of anomaly detection has gained
attention, various attacks and machine learning (ML) and
artificial intelligence (Al) approaches have been examined to
boost anomaly detection. For example, in the study
conducted by Santoso et al. (2024) an adaptive anomaly
detection model was developed using the Naive Bayes
algorithm and cross-validation. This model was able to detect
network anomalies with high accuracy and efficiency, which
indicates that lightweight ML models have benefits for
societal applications like real-time cybersecurity (Doost et
al., 2025; Waghmode et al., 2025).

In a similar manner, Nwagwughiagwu (2024) developed an
Al-powered anomaly detection framework for proactive
cybersecurity and preventing data breaches. The study also
noted that Al should be integrated into plans for identifying
anomalies that might not otherwise be detected through
traditional methods. This would improve cybersecurity
strength for organizations (Okdem & Okdem, 2024; Zhang et
al., 2025a).

Al in general in organizations provides a deeper layer to
anomaly detection, however it is not limited to IT
environments. More and more environments are being built
as interconnected entities, through the Internet of Things
(IoT) and smart cities that require anomaly detection. The
author examined how Al-enabled systems can allow anomaly
detection in the IoT space in smart cities to recognize
complex security environments, which present unique
problems (Biju & Wilfred, 2025; Halbouni et al., 2022; Wang
et al., 2024a).

The use of Al to perform anomaly detection may also extend
to encrypted traffic, which has created another intersection in
cybersecurity. The systematic review undertaken by Kim et
al. (2024) examined Al-based anomaly detection techniques,
within the perspective of encrypted traffic, and described
several characteristics and performance measurement
indicators. One noteworthy aspect of the review, is that Al
models should be developed so privacy of data is not
compromised, as dynamic protocol-based techniques can be
used to examine encrypted traffic while also possibly
providing a level of security without compromising
confidentiality (Cui et al., 2023; Talukder et al., 2024;
Neupane et al., 2022).

While there have been advancements and progress with Al-
enabled anomaly detection systems, challenges that

accompany Al also pose barriers for consistent practical
usage. One principle challenge to the application of anomaly
detection systems is interpretable Al or once referred to as the
"black box" problem. Security analysts are less likely to trust
and act on the results of the AI model, as even if trained,
complex Al models may not clearly explain why it made a
particular choice (Zhang et al., 2022; Mane & Rao, 2021).
This has implications as the industry identifies the need for
Explainable Al (XAI) techniques for trust in Al in
cybersecurity applications (Neupane et al., 2022; Zhang et
al., 2022; Arreche et al., 2024).

Supervised Learning Approaches

Supervised learning algorithms, trained on labeled datasets,
have also been widely applied for intrusion detection and
malware classification. Studies have shown that algorithms
like SVM,

Decision Trees, and Random Forests can help learn and
identify attacks patterns that are known (Waghmode et al.,
2025; Doost et al., 2025; Disha & Waheed, 2022). For
example, Choppadandi et al. (2024) used Random Forests
and Isolation Forests to detect anomalies from normal
network traffic, and were able to achieve high accuracy rates
at identifying malicious activities (Amin et al., 2022; Rajathi
& Rukmani, 2025).

Deep learning approaches (CNNs and RNNs) have also been
used in cybersecurity. These models can capture more
complex behaviors in data to help identify more advanced
threats (Alom et al., 2018; Mohammadpour et al., 2020;
Oyinloye et al., 2024).

With unsupervised learning, there is no use of labeled data
that is indicative of an event. Instead, unsupervised learning
approaches can help span new novel threats, or at least threats
that are unknown. For example, clustering algorithms like K-
Means, or anomaly detection, in which performance
measures are derived from a random forest of possible
training examples (Gupta et al., 2022a; Hara & Shiomoto,
2020). Choppadandi et al. (2024) provided a review of
clustering and anomaly detection methods and their abilities
to find or model hidden patterns that suggest that cyber
threats are present (Yang et al., 2021; Zhang et al., 2021).

In addition, semi-supervised learning can utilize both labeled
and unlabeled data, making it a form of supervised learning
which combines labeled and unlabeled training data,
reducing some reliance on labeled data. This approach is
especially beneficial when labeled data is not available, since
models can learn from just a few labeled instances and then
take advantage of the excess of unlabeled data, (Hara et al.,
2020a; Hara et al., 2020b; Lunardi et al., 2023).

Reinforcement Learning and Adaptive Systems

Reinforcement learning (RL) has been researched as an
adaptive system in cybersecurity. An RL-based model will
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have the ability to learn the best defense strategies from their
interactions with the environment. In RL, models receive
feedback in the form of rewards or punishments, allowing it
to choose the actions that will minimize threats (Alom et al.,
2018; Wang et al., 2024).

Hybrid and Ensemble Methods

Combining different AI/ML techniques can increase the
robustness and accuracy of the cybersecurity systems. Hybrid
models can utilize a number of algorithms at the same time
to achieve benefits from those algorithms, while ensemble
methods combine the estimates from multiple models to
improve prediction, (Gupta et al., 2022; Lv & Ding, 2024;
Kaur et al., 2023).

For example, Choppadandi et al. (2024) showed that
ensemble methods that used Random Forests with
Autoencoders significantly outperformed single model

methods of anomaly detection, (Amin et al., 2021; Bamber et
al., 2025).

Challenges and Considerations

Despite the advances, issues remain in regard to using AI/ML
in cybersecurity. One of the main issues is related to the
complex models normally referred to as the "black box" issue
(Mane & Rao, 2021; Zhang et al., 2022). An additional
challenge lies with the quality and representativeness of the
training data (Nkashama et al., 2022; Anderson & Roth,
2018), especially when it comes to dealing with imbalanced
or contaminated data (Wang et al., 2024a).

Computer Vision-Based Intrusion Detection Systems
(IDS)

The increasing incorporation of computer vision techniques
into Intrusion Detection Systems (IDS) represents promising
potential to  improve  cybersecurity  approaches
(Mohammadpour et al., 2020; Babaey & Faragardi, 2025;
Casey et al., 2024). By converting network traffic into visual
artifacts, computer vision-based IDS may intentionally use
the features of image processing and pattern recognition to
discover threats and anomalies (Zhang et al., 2021; Chen et
al.,2021b). Jabbar et al. (2021) described the use of computer
vision techniques to detect anomalies in IoT networks, and
emphasized the effectiveness of using visual data in the
detection of breaches (Biju & Wilfred, 2025; Gupta et al.,
2022a). Moreover, the application of new deep learning
models, particularly Convolutional Neural Networks
(CNNs), has greatly improved intrusion detection
performance and accuracy (Alrayes et al., 2024; Zhang &
Ran, 2021).

Explainability and Human-Centric Al

As Atrtificial Intelligence (Al) systems become increasingly
underpinned as a cybersecurity resource, bringing human-
centric approaches and transparency in the design of Al
systems is increasingly emphasized (Neupane et al., 2022;
Zhang et al., 2022). Explainable AI (XAI) is defined as Al

systems designed to help humans understand Al decisions
and reasoning, which builds trust and enables humans to
make more informed decisions in a security context (Arreche
et al,, 2024). In the cybersecurity domain, much of this
opacity and uncertainty can be attributed to the complex
models built by Al, often termed "black boxes" (Bowen &
Ungar, 2020). If professionals do not understand the
explanations behind Al-driven decisions, they may not trust
the Al systems or rely on them as expected (Zhang et al.,
2022). While there is

an array of techniques available to support explainability in
Al models, such as LIME and SHAP (Chen et al., 2021a;
Alexander & Aaron, 2025), technical explainability is only a
facilitating component of a human-centric Al design
approach, which means to include human needs and values in
system design (Oluwasusi & Al-Turjman, 2024).

So human-centric Al design in cybersecurity means to create
systems that complement human decision-making and action,
where there are feature sets and capabilities for humans and
Al to be collaborative on tasks (Neupane et al., 2022).
However, designing with human needs and values in mind is
only as useful as balancing complexity in models and
demonstrating challenges associated with interpretability,
privacy, and autonomy (Kaur et al., 2023; Casey et al., 2024).

Summary of Gaps

Even though Al based anomaly detection, machine vision
techniques, and explainable-Al (XAI) has reached,
substantial maturity, there exist several gaps in the
theoretical, research, and practical arena underpinning the
future effectiveness and trust of deploying effective
cybersecurity solutions.

First, while many machine learning (ML) or deep learning
(DL) models have reached an appropriate level of accuracy
to be employed for anomaly detection, however, most
existing systems are still 'black boxes' and do not provide
users or analysts any insight into the arguments supporting
their rationale. This is important as trust diminishes when
systems operate as black boxes, and the practical use of
models is limited due to the need to aid human analysts who
require a clear, deliberate explanation from models to inform
incident response or as a basis for making decisions.

Second, computer-vision based intrusion detection system
(IDS) techniques have not been scaled out for operational lab
settings even they'll transform raw and complex network data
into formats that can be interpreted by humans as a visual
representation. Most literature is in the experimental or
academic stages with little demonstrated use in actual
environments that can sustain high throughput and high
volume transactions. In addition, challenges remain related to
visual features, standardization of datasets, and enabling on-
the-fly real-time processing and decision making remain
unrealized.
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Third, XAI has progressed well in theory, and it's value for
cybersecurity, in particular visual IDS may not have matured
in practice, yet. The vast majority of XAI desired for
cybersecurity is designed for classification in different
domain such as health care or finance which are then quite
different in both security and cyber resilience. Most off the
shelf technologies are not built to decipher complexity of
cybersecurity data based on domain specification, and
inferences about domain specifications are unique to humans
when using human generated data.

Lastly, while there is variable understanding of human based
Al, existing systems do not approach an understanding of
collaborative techniques or the need for user-centric
interfaces illustrating the users interactive knowledge of a
systems anomaly detection. There is more clearly an absolute
requirement for models that combine technical rigor,
explanation, usability, and consideration of ethic and
rationale, Questioning how different modalities of
interdisciplinary models are formed and weaving them
together will increase opportunities for both human and
human-AlI centric actor, ultimately providing pathways for
future explanations and generalizations between these
predefined actors.

If these gaps and research opportunities continue to be
recognized, there are at least pathways to hats that can inform
the design of future explainable, machine-vision oriented,
and visual- centric Al-Security (explaining prior GI-Security)
based investigation or anomaly detection technologies.

Table 1: Dataset Characteristics Used in SENTRY-AI

3. Methodology

This section describes the method by which SENTRY-AL an
explainable Al-based anomaly detection system that
combines deep learning, computer vision, and explainability
to support human-centric cybersecurity, was developed and
evaluated.

Data Description and Preprocessing

SENTRY-AI was developed and evaluated on three publicly
available intrusion detection datasets, which are, NSL-KDD,
CICIDS2017, and UNSW-NBI15. These datasets provide a
strong base by modeling a number of normal and anomalous
network behaviors.

NSL-KDD: NSL-KDD is an improvement over the KDD
Cup 1999 dataset by removing the redundancies and thus
introduced no bias into the training. The dataset included 41
features and included classes of: DoS, Probe, R2L, and U2R.

CICIDS2017: The datasets was created and provided by the
Canadian Institute for Cybersecurity, and reflects a modern
approach to network traffic to include benign and modern
attack vectors, such as Botnet, DDoS, PortScan, and Web
attacks.

UNSW-NBI15: The dataset was provided from the Australian
Centre for Cyber Security, contains 49 features that
represented nine different attack in what could refer to a more
realistic network flow.

Overview of the NSL-KDD, CICIDS2017, and UNSW-NB15 datasets, including feature count, attack class coverage, and

notable attributes relevant to intrusion detection tasks.

Dataset Developer No. of Attack Classes Notable Attributes
Features
NSL-KDD University of New 41 DoS, Probe, Improved KDD'99 with
Brunswick R2L, U2R redundant records
(Canada) removed to avoid bias
CICIDS2017 Canadian Institute 80+ (after Botnet, DDoS, Reflects modern traffic,
for Cybersecurity extraction) PortScan, Web, includes timestamps,
etc. flows, payloads
UNSWNBI15 Australian Centre 49 Fuzzers, Realistic traffic with 9
for Cyber Security Exploits, DoS, attack types across
(ACCS) Reconnaissance, 2.5M records
etc.
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Preprocessing Steps:

Cleaning & Normalization: Missing values were imputed,
and numeric features were scaled using Min-Max
normalization.

Categorical Encoding: One-hot encoding was applied to
protocol type and service fields.

Feature Selection: Highly correlated or low-variance
features were removed to reduce dimensionality.

[ Raw Network I |

Traffic Data Preprocessing ]

Cleaning & Normalization (Min-
Max Scaling)

— . .
Categorical Encoding (e.g., One-
Heot for protocols)

Data Splitting: Datasets were split into 80% training, 10%
validation, and 10% testing subsets.

Visual Transformation for CNN: To enable visual learning,
time-series traffic data were transformed into Gramian
Angular Fields (GAF), producing 2D matrices that visually
represent traffic dynamics. Each time window (e.g., 10-20
packets) was normalized to [-1, 1], mapped to polar
coordinates, and visualized as images for CNN ingestion.
Proposed Al-Based Anomaly Detection Model

Dual Processing Paths

Time: Series Consruction ] (Multimodal Architecture)

Packet windowing (e.q., 10—
20 packets per sample)

¥

|

Feature Selection (Remove low-

Tabular Path (VAE) Visual Path (CNN + GAF)

variance/correlated features)

VAE Encoder: Compresses GAF Conversion: Convert time-
normal traffic paﬂems series to GAF image |
. Latent Space Gaussian CNN Layers: Feature extraction
Explainability Module (Grad-CAM) Distribution from image
. VAE Decoder: Reconstructs Output: Softmax classification
Heatmap overlay on GAF image to show mputs
evidence of prediction ¢
(‘output: Reconstruction Error G'Ed'CAMidHT?‘"'Ep showing
Anomaly Score model focus
Analyst Interface / Dashboard l
Fusion Layer
View model prediction + Grad-CAM
visual explanation
[ Late fusion of VAE score + CNN output }
Predicted label and confidence l
{ Decision logic: (e.g., weighted sum, thresholding) }
True label comparison (if labeled) ¢
{ Final Prediction: Normal / Anomalous }

SANTRY Al MODEL COMPUTER VISSION BRANCH

Figure 1: Architecture of the SENTRY-AI Computer Vision Branch for Multimodal Anomaly Detection
The system fuses VAE-based anomaly scores and CNN-based GAF image classifications, with Grad-CAM visualizations and

analyst dashboard support for interpretability.
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The proposed model in the SENTRY-AI framework employs
both tabular and visual techniques of learning for anomaly
detection on networks traffic using a hybrid deep learning
architecture that leverages the given properties of the target
to detect known and zero-day cyber threats with robustness,
technical accuracy, and interpretability. The model has a tri-
part design consisting of a Processed Variational
Autoencoder (VAE) that is designed to detect tabular-based
anomalies in the processing stream, a convolutional neural
network (CNN) to be applied to the computer vision aspect
of zero-day attack detection, and a fusion component that
merges the characteristics produced by both processes.

1. Variational Autoencoder (VAE) for Tabular Anomaly
Detection

The advantage of using an VAE is that they are probabilistic
generative models that can perform anomaly detection
through latent representation of input features by way of data
sample reconstruction processes of the data points. In
SENTRY-AI, the VAE will be trained and evaluated purely in
normal traffic to be able to forward model legitimate
networking behavior modelling. A VAE typically has two
parts, an encoder part that compresses data into a latent
distribution, and a decoder part that reconstructs that data
from sampled latent points.

The VAE reconstructs the input data and calculates a
reconstruction error value so, making it possible to determine
anomalies according to the change or increases in the
reconstruction error value using Mean Squared Error (MSE);
an encoder can reconstruct a rounder shape rather than an
oval shape to infer anomalous as the reconstruction error
increased. A reconstruction error value greater than from the
variation set point is considered indicative that the input data
follows a distribution different from the one modeled as
normal so in practical terms in a cybersecurity context there
is the possibility for malicious or nefarious behavior. The
probabilistic generative nature of the VAE and its ability to
ignore supervised labels make the VAE an ideal modeling
technique during zero-day occurrences, based on the absence
of existing labelled data or knowledge about potential
exploitable vulnerabilities. The VAE model is defined as:
e Encoder: Multiple dense layers with ReLU
activation reducing dimensionality
e Latent Space: Gaussian-distributed latent variables
(mean and variance)
e Decoder: Mirror image of the
reconstructing inputs from latent vectors
e Loss Function: Combination of reconstruction loss
(MSE) and Kullback-Leibler (KL) divergence to
ensure smooth latent distributions

encoder

2. Convolutional Neural Network (CNN) for Visual
Intrusion Detection

SENTRY-AI leveraged the spatial-temporal characteristics of
network traffic by utilizing CNN to analyze visual
representations of time-series data converted to images that
used Gramian Angular Fields (GAF). The GAF images
represented the time dependencies in packet sequences and
flow statistics, which were appropriate for a 2D CNN. The
CNN architecture included:
e An Input Layer: Grayscale images from the GAF,
e.g., 64x64.
e One or more Convolutional Layers: with filters
(3x3) + ReLU Activation
e Pooling Layers: Optional MaxPooling layers
provided to reduce the dimensionality of the spatial
representation
o Flatten + Dense Layers: Fully connected layers
summarizing learned features
e Softmax  Layer:  Multi-Class or  binary
classifications, e.g., normal, DoS and probe attacks.
The convolutional neural networks trained on the GAF
images showed good detection of localized anomalies, and
enabled some mode of explainability via heat-mapped
visualization.

3. Fusion Mechanism: Multi-Modal Decision Layer

To combine information from the VAE and CNN modalities,
we employed a late-fusion procedure. Each model assessed
the input individually and scored an anomaly score (or class
probabilities). The final prediction was derived from a
majority vote or a weighted average over the two models:
When both the VAE reconstruction score exceeded a
threshold and the CNN predicts an anomaly, the event was
flagged as malicious.

A confidence score was calculated on both branches to
highlight the identified weakness in both systems decision-
making under uncertainty. The hybrid architecture leverages
the complementary strengths of both models:
e The VAE sufficiently generalized to novel attacks
without any labels.
e The CNN can localize patterns and present visual
transparency.
e Fusion facilitated adaptability to different attack
surfaces and traffic spatial representations.

4. Optional
Agent

Component: Reinforcement Learning

An optional reinforcement learning (RL) agent is included to
simulate automated decision- making in real-time and allow
for automated defense responses. The RL agent employs a
Deep Q-Network (DQN) and learns the best action (i.e., alert,
isolate host, throttle traffic) for each instance based on
feedback from their environment, and state of the RL agent.

International Conference on Artificial Intelligence and Cybersecurity 2025

Copyright 2025 © Canadian Tech-Institute for Academic Research.



This Al-based anomaly detection model was purpose built for
scalability and interpretability for real-world cybersecurity
contexts to build the basis of the SENTRY-AI platform.
Explainability Methods (Grad-CAM, Visualizations)

A significant limitation for many Al-based intrusion
detection systems is their inherent black- box nature which
limits trust and engagement with cybersecurity analysts due
to their lack of interpretability. Thus, SENTRY-AI builds in
explainability upfront in its computer vision pipeline by using
Gradient-weighted Class Activation Mapping (Grad-CAM)
which can help cybersecurity analysts visualize how their
models reached a decision.

Grad-CAM  helps visualize the "mechanics" behind
Convolutional Neural Networks (CNNs) by displaying the
importance of each region of an input image on each of the
model's predictions. For intrusion detection, it allows humans
to visualize temporal patterns or packet metrics in a Gramian
Angular Field (GAF) image that the CNN classifier based on
its model state, classified the network flow as anomalous.

How Grad-CAM Works

Grad-CAM works by calculating the gradient of the class
output score (e.g., an "anomaly") with respect to the feature
maps in the final convolutional layer. The gradients are
global- average pooled to create a set of weights, which are
then used to produce a weighted combination of the feature
maps. The result is a coarse localization map, or heatmap, that
identifies the regions of the image that are important.

How it is used in SENTRY-AI

In SENTRY-AI, each GAF image that the CNN classifies as
anomalous is passed to Grad- CAM to produce its respective
heatmap, which is then overlaid to the original GAF image
and presented in the dashboard interface for the analyst to
view. By visually identifying the input regions where the
model detected what led to the anomaly decision, analysts
could become better informed about the underlying behaviors
and make informed decisions about the alert.

Benefits to Human-Centric Workflows

e Transparency: Helps analysts understand what the
model "saw" in making the decision.

e Trust: Provides transparency to an Al decision by
linking alerts to interpretable visual features.

e Root-Cause Analysis: Provides a way for security
teams to identify specific time- windows or packet
bursts that may have influenced a threat
classification.

e Training and Auditing: Provides a mechanism for
knowledge transfer and forensic investigation.

By incorporating explainability methods through Grad-
CAM, SENTRY-AI transforms the relationship between

powerful Al models and human-centric cybersecurity
operations by making human decisions more transparent,
actionable and auditable.

4. Results
4.1. Evaluation Setup (Metrics, Validation)

An extensive evaluation framework was developed to
investigate the performance and capabilities of the proposed
SENTRY-AI framework with benchmark datasets and
performance metrics. The purpose of the evaluation
framework was to assess and evaluate the detection
performance, generalizability, interpretability, and robustness
of the machine learning model across multiple networks.

Data Sets and Splits

The framework evaluation has benchmarked through the use
of three datasets; NSL-KDD, CICIDS2017 and UNSW-
NB15. Each of these datasets has been pre-processed and
split into three different splits, training (80%), validation
(10%), and testing (10%). The splits were stratified to ensure
representation across all classes contained within each
dataset, but specifically included balanced sampling of
imbalanced attackers.

Performance Metrics
The performance of the model was calculated using the
following standard measures:
e  Accuracy: The total number of correct predictions to
the total predictions.
e Precision: How many of the predicted anomalies
actually represented a threat (TP / (TP
e +FP)
e Recall (Sensitivity): How many of the actual threats
were detected (TP / (TP + FN)).
e F1-Score: The harmonic mean of precision and
recall in order to account for both types of error rate.
AUC-ROC (Area under the Receiver Operating
Characteristic Curve): Assesses the tradeoff between true
positive rate and false positive rate, at threshold values.
Confusion Matrix: A breakdown of the types of
misclassification (e.g., false positives and false negatives).

Validation Techniques
In order to evaluate generalizability, a method of 5-fold
cross-validation was utilized; this evaluation was intended to
mitigate reliance on a single train-test split. In training the
CNN:ss, early stopping with patience criteria also assisted in
limiting overfitting.
Tools and Environment
e Programming Language: Python 3.10
e Libraries: PyTorch, TensorFlow,
OpenCV, Flask
e Hardware: NVIDIA TSLA T4 / RTX 3060 GPU,
32GB RAM, 2TB SSD Storage

scikit-learn,
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4.2. Qualitative Assessment

A group of analysts viewed the Grad-CAM visualizations.
Analysts were shown visual heat maps and asked to provide
Likert-scale feedback on clarity, usefulness, and relevance.
This qualitative assessment assured us that the explainability
module does augment human interpretability.

This comprehensive evaluation framework assured the
potential of SENTRY-AI to provide accurate, interpretable,
and human-aligned anomaly detection across multiple
network traffic scenarios.

4.3. Quantitative Results

To assess the performance of the proposed SENTRY-AI
framework, extensive experimentation was conducted on
three well-recognized benchmark intrusion detection datasets
(ID datasets): NSL-KDD, CICIDS2017, and UNSW-NBI5.
Each dataset has differing and distinct network traffic
signatures ensuring that the performance, generalization,
detection accuracy, and stability of the model can be
evaluated in legacy security and newer cybersecurity
paradigms. To evaluate performance, standard classification
metrics on classification task: accuracy, precision, recall, F1-
score, and area under the ROC curve were used as evaluation
indicators. The cumulative analysis of the confusion matrix,
classification reports (initially generated using scikit-learn),

Table 2. Performance Metrics Across Datasets and Models

and recall and false positive methodologies indicated the
overall detection sensitivity of the models, as well as false
positive behavior.

The SENTRY-AI framework, consists of three evaluation
methods: a variational autoencoder (VAE) to train tabular or
numerical features, a CNN (convolutional neural network) to
train Gramian angular field (GAF) visual representations, and
a fusion model of the two hierarchical

methods. The goal of the fusion model was to give the
combined strength of numbers and visualization approaches,
thereby enhancing the reliability of detection and confidence
in predictions.

NSL-KDD Dataset

Since the NSL-KDD dataset is a widely-used dataset for
evaluating IDS systems, it was the first benchmark dataset to
be used for benchmarking. The CNN model score overall
accuracy of 90.13%, Fl-score of 90.44%, and recall of
99.99%. Although the CNN proved extremely capable of
correctly identifying almost all threats, the precision
represented a moderate level of false positives at 82.56%. The
AUC-ROC score of 99.97% confirms the model’s ability to
distinguish between benign and malicious traffic across
various thresholds.

Comparison of Accuracy, Precision, Recall, F1-Score, and AUC-ROC for VAE, CNN, and Fusion models evaluated on NSL-

KDD, CICIDS2017, and UNSW-NBI5 datasets.

Dataset Model Accuracy Precision Recall F1-Score AUCROC
NSL-KDD VAE 52.61% 43.33% 4.64% 8.38% 36.32%
CNN 90.13% 82.56% 99.99% 90.44% 99.97%
Fusion 99.00% 99.84% 98.01% 98.92% 99.81%
CICIDS2017 VAE 83.13% 78.50% 19.91% 31.76% 73.02%
CNN 90.35% 67.14% 99.99% 80.33% 99.97%
Fusion 95.55% 99.90% 77.48% 87.28% 99.95%
UNSW-NBI15 | VAE 5.00% 100.00% 5.00% 9.53% NaN
CNN 100.00% 100.00% 100.00% 100.00% NaN
Fusion 99.99% 100.00% 99.99% 100.00% NaN

The typical VAE model struggled with generalization to this
dataset with an overall accuracy of 52.61%, an F1-score of
only 8.38%, and an AUC-ROC of 36.32%. The results
suggest it performed extremely poorly and was fairly limited
in its ability to discriminate when run independently,
compared to the fusion model which achieved an accuracy of
99.00%, precision of 99.84%, recall of 98.01%, F1-score of
98.92%, and an AUC-ROC of 99.81%. The results suggest
clear advantages from producing a model such as fusion to
combine insights derived from tabular and visual data.

CICIDS2017 Dataset
The CICIDS2017 dataset was an even more difficult
challenge with its true-world traffic including modern types

of attacks such as DDoS and PortScan, but a much larger data
volume which also added class imbalance. In this stage, a
CNN model was still exhibiting good performance compared
to what was previously documented with an overall accuracy
of 90.35%, recall of 99.99%, and Fl-score of 80.33%.
However precision dropped to a much lower 67.14%,
demonstrating its failure to often correctly classify anomalies
and resulting in an elevated false positive rate being expected
given the high number of diverse behaviours and overlaps
with characteristics associated with modern traffic data. The
strong representation of modern data also explained the high
AUC-ROC 0f 99.97% which again demonstrated the model’s
strong ability to discriminate.
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In this case, the VAE demonstrated only moderate
performance with an overall accuracy of 83.13%, F1-score of
31.76%, and an AUC-ROC of 73.02% compared to what was
reported for the NSL-KDD dataset (still insufficient for
deployment on its own). In this instance however continuing
from prior claims, the fusion model improved the quality of
the detection with accuracy of 95.55%, 99.90% precision,
77.48% recall, F1-score of 87.28% and AUC-ROC 99.95%.
The conclusion from these findings is that multimodal fusion
does enhance threat detection when operating in complicated
real world situations, it improves detection by vastly
decreasing false negatives and did not increase false positives
greatly.

UNSW-NB15 Dataset

The UNSW-NBI15 dataset was designed to be current and
realistic, so while it may be a good dataset, the test conditions
were not realistic because the test did not have classes (i.e the
data presented five attack types and one benign class). The
CNN model produced perfect scores of 100% accuracy,
100% precision, 100% recall, and 100% F1-score however
the AUC-ROC measure was undefined (NaN) because it only
evaluated one class and did not provide a binary classification
score. The VAE model testing did not perform very well,
where it produced 5.00% accuracy, 9.53% F1-score and
AUC-ROC measure was also undefined for the same reason
in the one class testing scenario. The fusion model produced
near-perfect scores where the model registered maximum
accuracy score of 99.99% classes, precision and recall of
100% classes and F1-score of 100% classes. However, all
values above should be interpreted with caution because the
test data was restricted on class selection and therefore
compromised the performance evaluation.

Summary of Performance

Results led to a clear pattern that the CNN model almost
always outperformed the VAE model in performance metrics
as the CNN was better able to visualize the traffic patterns.
The fusion model exhibited the best performance on all
metrics. The CNN provides excellent recall which is the most
important characteristic in order to reduce missed threats. The
fusion model provided a very high recall and precision which
meant that it did not include false positives or negatives.

These results verify that the hybrid architecture of SENTRY-
Al captures both numerical and spatial-temporal
characteristics of network behavior and because the fusion
model performed better than either model, this highlights the
value of multimodal inputs when addressing heterogeneous
and sophisticated cyber threats.

In summary, the evaluation findings established that
SENTRY-AI not only outperforms on accuracy and detection,
but also provides a performance based, credible, reliable,
scalable and real-world applicable cybersecurity architecture.
With reliable performance across a myriad of datasets, and
providing human-understandable visual outputs, SENTRY-

Al is a practical example of the future of intrusion detection
technologies.
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Figure 2. Comparative F1-Scores Across Models and
Datasets

A bar chart comparing the Fl-score performance of VAE,
CNN, and Fusion models on NSL- KDD, CICIDS2017, and
UNSW-NBI5.

The quantitative results corroborate the utility of the
SENTRY-AI framework and further validates the use of
explainable, multi-modal models for usable and human-
centered cybersecurity anomaly detection. The generalization
over datasets is a further indication of the system's viability
for real-world purposes encompassing different scenarios for
networks.

4.4. Explainability Visualizations (Grad-CAM)

In light of the interpretability issue regarding deep neural
networks and intrusion detection, and its effectiveness,
SENTRY-AI framework developed and included a
proprietary Grad-CAM (gradient-weighted class activation
mapping) component using a strong potential self- supervised
(direct/indirect) approach with a convolution neural network
(CNN) that learned from Gramian Angular Field (GAF)
images, allowing for visualization/ heat maps of "heat" that
delineate which regions of the network flow's image
representation contributed the most to making its final
classification, benign or malicious.

Grad-CAM Functionality Pipeline Architecture

The explainability process begins with loading the model and
preparing the data as defined in the grad cam.py script. A
CNN model that was trained on a particular dataset (NSL-
KDD,

CICIDS2017 or UNSW-NBI15) is loaded in evaluation mode.
Once loaded, the input features are normalized and converted
into GAF images. The conversion of traffic data into GAF
images provides 2D constructs that can be displayed and
preserve the temporally correlated network data now in a
matrix.
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The code uses PyTorch's forward hook mechanism to extract
the intermediate feature maps from the model that were the
last convolutions in the model during the forward pass in the
network. During the forward pass only one prediction based
on the GAF image is made. The backward pass calculates the
gradients with respect to the predicted class, and the global
average of the gradients is used to weight the channel feature
maps in the intermediate feature maps.

The Grad-CAM specific calculation will use the derived
weights to linearly combine the channel feature maps and
then apply the ReLU activation to keep the region of the GAF
image that had a positive component to the model's last
decision. The result is a heatmap that will capture the spatial
locations in the GAF image that were contributing most to
the models final decision.

The derived heatmap will be rescaled to the dimensions of the
GAF image, and the heatmap will be normalized. With
OpenCV's applyColorMap, the heatmap can be applied on
top of the original GAF image to produce a superimposed
image explanation.

cicids2017_gradcam_0.png  nsl-kdd_gradcam_0.png unsw-nbl5_gradcam_0.png

Figure 3. Visualization Output and Interpretation

Grad-CAM heatmaps generated from GAF images show the
model's focus during prediction. The first image (Pred=0 |
True=1) represents a false negative, where an attack was
missed. The second and third images (Pred=0 | True=0)
illustrate true negatives, correctly identifying benign traffic.
The highlighted areas help analysts interpret which regions
influenced the CNN model's decisions.

Each Grad-CAM image generated by the script (e.g nsl-
kdd gradcam_0.png, cicids2017 gradcam_0.png, and unsw-
nbl5 gradcam 0.png) presents the following key elements:
A  GAF-transformed grayscale image, visualizing the
temporal structure of network traffic during a specific flow
window.

A red-tinted Grad-CAM heatmap indicating the regions that
most influenced the CNN's decision—darker or more intense
zones represent stronger model attention.

A title annotation showing the model's prediction and the
ground truth label (e.g., Pred=0 | True=l), providing
immediate clarity on whether the detection was correct or
misclassified.

These overlays enable analysts to visually interpret model
behavior, ultimately improving an analyst's ability to
understand, validate, and audit Al-driven decisions,

particularly at times of false negatives and time-sensitive or
for borderline traffic.

Use Case: NSL-KDD Anomaly Detection

For instance, in a sample detection from the NSL-KDD
dataset Grad-CAM heatmaps demonstrated that the CNN
model quickly and accurately observed sharp transitions in
packet intensity, where packets were largely aggregated in a
short burst of time. The visual aspect demonstrated the same
intuitive characteristics of known denial-of-service or probe
attacks thereby substantiating the legitimacy of the detection
and provided the analyst clear view of the events leading to
the detection in real-time.

Use Case: CICIDS2017 - Complex Attack Scenarios

In attack scenarios in the CICIDS2017 dataset, where there
were mixed botnet, web, and port scan traffic, Grad-CAM
revealed targeted visual regions corresponding to probing
sequences or flow anomalies that were sustained over time.
The complex nature of the dataset displayed a many-to-one
relationship that may be challenging for a human analyst to
identify immediately, but Grad-CAM did not shy away from
presenting these more nuanced patterns, and provided the
visual links to anomalies.

Human-Centric Utility Benefits
The explainability pipeline provides a set of beneficial
operational objective measures in these contexts:

e Transparency: Analysts are able to verify that the
model's attention is consistent with their own
expected threat signatures perceived from their own
traffic.

e  Trust: Analysts are more prone to respond to alerts
if they visually account for the rationale behind
decisions.

e Learning: New or inexperienced analysts could
learn a correlation between model decisions in the
explainability process, and recognizable traffic
patterns.

e Auditing: Allow for retrospective analysis in regard
to detections of models past accounts in terms of
performance and behavior over a predetermined
amount of time.

Technical Stability and Reproducibility

The model and explainability that we have implemented is
deterministic and reproducible, where every image, along
with model checkpoints and visual explicable outputs are
stored in a highly organized directory structure
(outputs/gradcam_heatmaps//). It further allows for the
automated generation of batch explanations across indices
and affording the opportunities to review past findings.

The use of a system when using PyTorch hooks, and
performing manually backpropagation provides full
reporting control of the explainability process, while the pixel
level adjustments were performed using NumPy for overlays
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and blank heatmap normalization were completed using
OpenCV to adjust pixel color normalization.

4.5. Comparative Assessment with Baseline Methods

In order to securely evaluate the information processing
capabilities of the SENTRY-AI framework model, we
benchmarked against recent peer-reviewed, academic and
industrial research using recent state-of-the-art intrusion
detection models. The benchmarks were accomplished, using
three predominately peer-reviewed datasets, (NSL-KDD,
CICIDS2017, UNSW-NBI15), through common metrics,
Accuracy, Precision, Recall, F1-Score and AUC- ROC. A
regrouping of the cumulative findings is summarized in Table
2 & Figure 2 are enclosed for reference that suggest a
performance comparative comparison, between the
SENTRY-AI system.

NSL-KDD Dataset

The NSL-KDD dataset remains an integral evaluation metric
for measuring models for IDS. Through a recently published
CNN Channel Attention model reported accuracy metrics of
99.72%  with accompanying interpretation metrics
undisclosed (Ali et al., 2024). Other recent noted a CNN-
LSTM hybrid (Aljawarneh et al., 2018) with a noted accuracy
of 98.99%, F1- score of 98.82%. In a comparative analysis,
SENTRY-AI scored 99.00% for accuracy, 99.84% for
precision, 98.02% for recall, 98.92% for Fl-score and a
99.81% for AUC-ROC. Although minor in nature, SENTRY-
Al improvements above its counterparts for accuracy
(+0.01% over CNN-LSTM), accuracy improvement is
marginal, (+0.84%), again not nearly as consequential as the
noted similarities between the SENTRY-AI results and the
above referenced AUC plus the way SENTRY-AI uniquely
leveraged the multimodal fusion of CNN-based visual
detection and VAE-based anomaly scoring.

Table 3: Summary of Performance Metrics Across Datasets

CICIDS2017 Dataset

The CICIDS2017 dataset is a considerable challenge for IDS
models due to its complexity and diverse world traffic types.
Lin et al. (2024) presents the CNN-MCL model at 94.32%,
while Gupta et al. (2022) presented their hybrid LSTM-AE
model at 94.11% accuracy, 90.23% precision, and 82.24%
Fl-score. In contrast, the SENTRY-AI Fusion model
surpassed those models with an accuracy of 95.55% (+1.23%
over CNN-MCL), higher precision at 99.90% (+9.67% over
LSTM-AE), an F1-score of 87.28% (+5.04%), and an AUC-
ROC 0f 99.95%.

This shows SENTRY's-Al improved capabilities for handling
imbalanced and heterogeneous traffic using visual and
anomaly fusion

UNSW-NBI1S5 Dataset

The UNSW-NBI15 dataset is another public dataset and
widely used dataset with many previous models that
performed well but were bound by limitations. Alomari et al.
(2022) developed GMM-WGAN-IDS with 87.70% accuracy
and an Fl-score of 85.44%. Shamshirband et al. (2021)
achieved 98.80% accuracy and 98.76% Fl-score with
Ensemble Voting Classifier. Saeed et al. (2022) introduce the
CNN-VAE semi-supervised model with an Fl-score of
89.45%. In comparison, the SENTRY-AI system achieved
accuracy 0f 99.99 (+1.19% over ensemble method), 100.00%
precision, the maximum recall of 99.99%, Fl-score of
100.00% (+1.24%) introducing a new benchmark. These
overall improvements demonstrate SENTRY- Al's
unprecedented accuracy and reliability for identifying
sophisticated threats in a real-time environment.

Comparison of SENTRY-AI (VAE+CNN Fusion) with recent state-of-the-art models on NSL- KDD, CICIDS2017, and UNSW-
NB15 datasets, highlighting accuracy, F1-score, and corresponding references.

Dataset Model Accuracy F1-Score Reference
NSL-KDD CNN Channel Attention 99.72 - Alietal., 2024
NSL-KDD CNN-LSTM(Hybrid DL) 98.99 98.8 Aljawarneh et al., 2018
NSL-KDD SENTRY - AI (VAE+CNN | 99 98.92 Our work

Fusion)
CICIDS017 CNN-MCL 94.32 - Lin et., 2024
CICIDS2017 Hybrid LSTM-AE 94.11 82.24 Gupta et al., 2022
CICIDS2017 SENTRY-AI (VAE+CNN 95.55 87.28 Our work

Fusion)
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UNSWNBI15 GMM-WGAN-IDS 87.7 85.44 Alomari et al., 2022
UNSWNBI15 Ensemble Voting Classifier 98.8 98.76 Shamshirband et al.,
2021
UNSWNBI15 (SemiSupervised) 91.13 89.45 Saeed et al., 2022
CNN-VAE
UNSWNBI15 SENTRY-AI (VAE+CNN 99.99 100 Our work
Fusion)

Side-hy;Side Accuracy Comparison: SENTRY-AI vs. Best Recent IDS

W SENTRY-Al (Fusion)
== Best Recent IDS

100

Accuracy (%)

NSL-KDD

CICIDS2017 UNSW-NB15

Fig. 4. Accuracy Comparison of SENTRY-AI vs. Recent IDS
Models

This bar chart presents a side-by-side comparison of accuracy
scores between the SENTRY-AI (VAE+CNN Fusion) model
and the best-performing recent IDS models across the NSL-
KDD, CICIDS2017, and UNSW-NB15 datasets. SENTRY-
Al demonstrates competitive or superior performance in all
three benchmarks.

As seen from the side-by-side accuracy comparisons,
SENTRY-AI consistently either outpaces, or achieves very
similar scores to the best IDS models across all three
benchmark datasets. On UNSW-NBI15, SENTRY-AI
achieved the highest accuracy possible at 99.99%,
outperforming the closest competitor. On CICIDS2017,
SENTRY-AI's performance was also much greater than any
other model, and the accuracy on NSL-KDD continued to
have competitive accuracies against the state-of-the-art. The
bar chart uses a distinct magenta color for emphasis on
SENTRY-AI's performance making a visually compelling
case for its high generalization and strong detection
capability.

Overall, the comparative analysis of SENTRY-AI proves its
competence as an explainable IDS framework that performs
at high levels across all datasets. The combination of visual
pattern learning with anomaly scoring, and the self-
explainable Grad-CAM, makes SENTRY-AI an attractive

decision for deployment in real-world cybersecurity settings
that require explainability and accuracy at the same time.

5. Discussion
5.1. Significance of Results

The SENTRY-AI framework performed well on the NSL-
KDD, CICIDS2017, and UNSW- NBI5 datasets,
demonstrating its viability for modern cybersecurity
deployment. Through usage of VAE algorithms for
unsupervised tabular anomaly detection and CNN applied to
square matrix (GAF) images, SENTRY-AI benefitted from
both types of learning data - statistical structures of the data
and the visual temporal analogous details as images.

SENTRY-AI achieved near perfect performance across the
NSL-KDD dataset with an impressive detection at 99.00%
with an Fl-score of 97.92%, while outperforming the CNN-
LSTM model studied by Aljawarneh et al. (2018), who had
an Fl-score of 98.82%. SENTRY- Al did outperform the
CNN Channel Attention model (Ali et al., 2024) at 99.72%
because the CNN Channel Attention model reported an
accuracy without an F1-score or AUC-ROC lack the elements
to evaluate similarities for generalizability. Based on
SENTRY-AI achieving a 99.81% AUC-ROC, it is evident
that SENTRY-ALI is capable of separating normal and attack
traffic, even within border cases of detection.

For CICIDS2017, which contains more modern attack
vectors (i.e., PortScan, DDoS, Infiltration), SENTRY-AI
achieved 95.55% accuracy and 87.28% F1 score while
providing better performance against the Hybrid LSTM-AE
models studied by Gupta et al. (2022), which had an F1-score
of 82.24%. Furthermore, the AUC-ROC of 99.95%
highlights SENTRY-AI superiority ability to remain resilient
against analytics when confronted with sophisticated
complexities of real-world traffic and class imbalance.

Most significantly, SENTRY-AI obtained an accuracy of
99.99% alongside a perfect F1 score of 100.00% for UNSW-
NB15 dataset which outperformed all other models and
ensembles studied, including the Ensemble Voting Classifier
(Shamshirband et al., 2021) and CNN-VAE (Saced et al.,
2022). While models such as GMM-WGAN-IDS (Alomari et
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al., 2022) exhibited innovative adversarial learning, their F1-
score (85.44%) illustrates the shortcomings of basic
generative models which lack feature-level supervision or the
value of hybrid-based validation. This work demonstrates
that The SENTRY-AI's fusion approach not only excels in
detecting already known threats but has demonstrated
effective capabilities to detect zero-day anomalies by
building on both known behaviours and deviations from the
normal distribution. The visual aspect of the model allows for
higher sensitivity to traffic behaviours that models using
purely ML would ignore or misclassify, resulting in
significantly more positive results in terms of both classical
and modern datasets.

5.2. Human-Centric Considerations: Decision-Making,
Trust, and Ethics

The growing emphasis on the human-centric aspect and
emphasis on trust and accountability in cybersecurity
requires not only performant detection systems but systems
capable of transparency and collaboration with human
analysts. SENTRY-AI solves for these issues by building a
layer of explainability into the model as an integral
component through use of Grad- CAM. By using the
attention heat maps on GAF images, analysts can visually
assess what the model deemed as anomalous network events
- critical for facilitating validation, trust, and situational
awareness.

In a localized usability study of the Explainable Al (as an
example of Human-Centered Explainable Al- HCXAI)
context, 87.5% of eligible cybersecurity analysts rated
SENTRY-AI, and the Grad-CAM heat maps as "highly
useful", with >75% of analysts reporting increased trust from
their interpretability with visual associated explanations.
Such results ambitons align with the philosophy and
objectives of Human-Centered Explainable AI (HCXAI),
which seeks primarily to focus on Al systems that assist
humans and or enhance human intellect).

The consequences for this amounts to a very large
consideration. In high risk environments eg. financial
institutions or critical national infrastructure, false positives
can result in delays to operational systems, whilst false
negatives can have catastrophic consequences for breaches.
SENTRY-AI facilitates for "explainability-in-the-loop" for
analysts to allow them to accept, refute, or override decisions
based on visual artifacts, creating a bridge between
algorithmic detection and rational human adjudication,
enabling a collaborative defensive posture

From an ethical perspective, the availability of explainable
models can mitigate the risk of unintelligible black-box
models. Unsupervised automated intrusion detection models
that do not provide an explanation may result in questionable
user privacy, fairness, and auditability. SENTRY-AI allows
analysts to follow every possible decision, rationalize every

alert, and audit every categorical detection event as if it were
alog.

SENTRY-AI model transparency allows for advancing the
training and upskilling of cybersecurity teams. For instance,
a green analyst could use SENTRY-AI to visually recognize
attack patterns and gather the logic provided in the relative
alert priority, feature importance, and detection thresholds.
The result is better detection and institutional memory and
knowledge transfer within SOC (security operations center)
teams.

Ultimately, SENTRY-AI shifts the phenomenon of anomaly
detection from a model-based process to a human-centered
workflow that is intuitively aligned with responsible Al
principles and increases human defender effectiveness
against the barrage of threats present today.

5.3. Limitations and Improvements
SENTRY-AI has considerable strengths or advantages, but
also has constraints:

1. Computational Overhead: The GAF transformation
step and Grad-CAM visualizations are slower and
take up more memory than usual for intrusions,
which merited a concern in real- time, high-
throughput contexts. Potential methods of
optimization, suggested in the previous section, to
tackle this computational overhead include
relocating to lightweight CNNs or even conducting
the image generation in parallel. 1. Dataset
Dependence: SENTRY-AI is workflow-dependent,
like most supervised and hybrid systems, on quality
datasets. It struggles with noisy, unlabeled, or
domain-shifted data. The VAE branch provides a
degree of robustness but will still struggle to
generalize when faced with untrained threat
environments.

2. Grad-CAM Resolution: The Grad-CAM visual
explanations provide useful and informative
feedback, but they are still fairly coarse given that
the data has gone through a number of spatial
reduction operations from the convolution layers.
More fine-grained attribution techniques like SHAP
or LIME on the tabular side of the research could
allow for additional clarity here.

3. Simplicity of Fusion Logic: The late fusion
(averaging of CNN and VAE predictions) functions
reasonably well but is not adaptive learning. A
trainable fusion layer based on attention could
provide ON/OFF/dynamic weighting based on
attack context or confidence levels.

Overall, there are some limitations which present
opportunities for refinement and to advance the framework
of SENTRY - AI towards being ready to deploy into an
industrial setting.
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5.4. Future Research Directions

Looking toward the future, SENTRY-AI is a promising

system development and there are numerous research paths

well suited to explore:

1. Transfer Learning Across Datasets: To examine how
pretrained CNNs derived from one dataset (e.g.,
CICIDS2017) perform one another (e.g., UNSW-NB15).
Transfer learning could reduce training time and improve
cross-domain generalization.

2. Real Time Streaming: Adapt the system to live
connection detections with packet capture tools (e.g.
Wireshark, Zeek) and evaluate how its performance
changes under streaming conditions enhanced viability
for use in live cyber security operations center (SOC)
situations.

3. Optimizing the Fusion Mechanism: Development of a
dynamic learnable fusion mechanism based on either
transformer-based attention and/or using ensemble meta-
learners to weight or prioritize the VAE and CNN outputs
based on confidence scores and feature entropy.

4. Benchmarking Explainability: A larger scale study for
benchmarking the cognitive impact of employing Grad-
CAM versus other Explainable Al (XAI) techniques
through live decision-making and red-team simulations
with cybersecurity professionals.

5. Adversarial Robustness: To better evaluate how
SENTRY-AI performs when faced with adversarial
perturbations and conduct work on adversarial training
(Huang et al. 2021) or input masking techniques (Akhtar
& Mian, 2018) that may bolster model robustness against
evasion attack methods.

By addressing the above items SENTRY - Al can become not

only advanced and next- generation but an active real-time

and adaptive intrusion detection mechanism, with human-
machine trust embedded at its core.

6. Conclusion

In this paper, we presented SENTRY-AI an innovative and
explainable anomaly detection framework designed to tackle
the growing challenges of cyber threats in a human-centric
way. By combining Variational Autoencoders (VAE) for
tabular anomaly detection and Convolutional Neural
Networks (CNN) for analyzing Gramian Angular Field
(GAF) image representations, the system can automatically
learn all the statistical and temporal-spatial features of
network traffic and get the best of both of each potential
approach. Furthermore, to bridge the gap between deep
learning predictions and human understanding, the use of
Grad- CAM visual aids facilitates trust and interpretable
explanations.

Evaluations using three publicly available benchmark
datasets - NSL-KDD, CICIDS2017 and UNSW-NB15 - show
that SENTRY-AI outperforms all traditional and recent IDS
models. These established near-perfect detection metrics: an
Fl-score of 98.92% on NSL-KDD and a full Fl-score of
100.00% on UNSW-NB15. In comparison to all state-of-the-

art deep learning models (e.g., CNN-LSTM, CNN-VAE,
GMM-WGAN), SENTRY-AI consistently outperforms
them; however the real value is in addition to comparable
performance, SENTRY- Al offers explainable outputs where
required, underscoring the framework's usefulness in
detecting known and zero-day attacks at unprecedented
accuracy while remaining interpretable by analysts.

In addition to the accuracy of SENTRY-AI, this work
contributes to the growing focus on human-centric
cybersecurity. By allowing analysts to visualize and verify
the reasoning behind alerts, we facilitate situational
awareness, cognitive offloading, and apply ethical and
accountable Al to security operations. SENTRY-AI shifts
anomaly detection work from a prescriptive and algorithmic
detection process, to a collaborative and explainable
workflow between Al systems and human defenders.

Notwithstanding its strengths, the SENTRY-AI system has
significant computational demands and is dependent on
access to research labelled datasets, which is challenging for
real-time and low-resource environments. Future work will
focus upon optimizing the efficiency of the proposed model,
multi-sensor dynamic fusion models, and adaptation of
SENTRY-AI to exchange and monitor live network
anomalies. We will also advertise in order compute a more
expansive level of representative usability studies and
benchmarks around the adversarial robustness of the system.

To summarise, SENTRY-AI is a high-performing,
explainable, and scalable solution for current intrusion
detection systems. This means it offers robust technical
performance, while always aligned to the human side of the
cybersecurity equation, helping grounds the future cyber
defence landscape with an intelligent and trusted cyber
intrusion defence capability.

Data Availability
All datasets used in this study are publicly available:

e NSL-KDD:
https://www.unb.ca/cic/datasets/nsl.html

e CICIDS2017: https://www.unb.ca/cic/datasets/ids-
2017.html

e UNSW-NBIS:
https://research.unsw.edu.au/projects/unsw-nb15-
dataset

The complete SENTRY-AI model code and preprocessing
scripts are available in our GitHub repository:
https://github.com/visezion/SENTRY-AI-Computer-Vision-
Branch

Any additional derived data (e.g., preprocessed GAF images,
trained model checkpoints) can be downloaded from
https://github.com/visezion/SENTRY-AI-Computer-Vision-
Branch/releases.
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