
International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

9

ASTRID: API Sequence Threat Recognition with Intelligent Discrimination

Ankita Ghosh

Indira Gandhi Delhi Technical University for Women, Delhi, India
ankita0512ghosh@gmail.com

Abstract

This paper introduces ASTRID, a GAN-based model that can
identify malware using API call sequence analysis in noisy
settings, a typical problem in disk forensics. The new framework
addresses the shortcomings of conventional detection approaches
by leveraging adversarial learning to differentiate between
benign and malicious sequences. API call information from two
noisy datasets was utilized to train the model under real-world-
like conditions, while a third, unseen dataset was employed to test
the model's generalization ability. ASTRID achieved an accuracy
of 96.8% on training data and 95.5% on the test dataset, with
performance comparable to state-of-the-art models. These
outcomes demonstrate the power of ASTRID to tackle noise and
provide detection reliability, providing an impressive solution
towards durable malware detection through sequence-based
learning.

1. Introduction

Malware, which stands for malicious software, is any

software that is deliberately created to harm a computer

system, server, client, or network. It encompasses a broad

range of threats, including viruses, worms, ransomware,

trojans, spyware, and adware. Malware has extensive effects,

not just on individual users but also on critical infrastructures

and businesses. A recent real-life case is the 2025 cyberattack

on Marks & Spencer (M&S)1, a major UK retailer, where the

hacking group "Scattered Spider" employed DragonForce

ransomware to breach M&S's IT systems, bringing online

orders to a standstill, disrupting supply chains, and incurring

weekly losses estimated at £15 million.

With the sophistication and frequency of these attacks

increasing, the importance of effective malware detection

mechanisms has never been greater2. Timely and precise

detection is required not only to avert financial loss but also

to maintain data privacy, system integrity, and public trust.

With the increased incidence of zero-day vulnerabilities and

obfuscated malware instances, conventional antivirus

solutions tend to miss threats in real time.

To improve detection functionality, researchers have resorted

to machine learning (ML) methodologies. SVM, Random

Forest, and K-Nearest Neighbors (KNN) have been the most

1https://www.theguardian.com/business/2025/may/03/insi
de-the-marks-and-spencer-cyber-attack-chaos

common models applied to malware classification in terms of

static and dynamic characteristics (Zhou & Jiang, 2012).

These solutions, even if they exhibit a high success rate in

balanced data sets, generally fail if submitted to new, unseen,

or manipulated samples. Research indicates that ML models

(Azeem, Khan, Iftikhar, Bawazeer, & Alzahrani, 2024) are

susceptible to evasion attacks and not robust enough in real-

world scenarios, restricting their scalability and adaptability.

These limitations are remedied by the introduction of

Generative Adversarial Networks (GANs) as an innovative

solution. Unlike traditional classifiers, GANs are composed

of two neural networks—a generator and a discriminator—

engaged in a competitive learning process, enabling them to

create synthetic data samples that are similar to real ones

(Goodfellow, et al., 2014). In malware detection, GANs can

enhance training data by creating realistic malicious

sequences, thus enhancing generalization and resilience

against new threats. Recent research, including PlausMal-

GAN (Noguchi, Sun, Lin, & Harada, 2022), reveals that

GAN-based architectures perform better than traditional ML

models in identifying advanced malware, particularly for

noisy and imbalanced data.

In the past, API call sequence-based malware detection has

also increased in reputation as compared to standard static

analysis. Static analysis that analyzes binary code or file

signatures without actually executing them does not perform

well against contemporary malware based on obfuscation,

encryption, or polymorphism in covering up its genuine

behavior (Guri & Bykhovsky, 2019). Conversely, dynamic

analysis, particularly API call monitoring, realizes the current

behavior of applications while they engage with system

resources, offering a more robust detection technique against

such evasions. API calls are a form of behavioral fingerprint

that realizes patterns of malicious intent, like unauthorized

access to files, changes to the registry, or communications

over the network. As malware becomes more advanced and

adaptive, examining sequences of API calls enables more

capable, context-specific models that are better able to

generalize in real-world threat scenarios (Ge, Yarom, Li, &

Heiser, 2017). Hence, combining API dynamic analysis with

high-performing models such as GANs is a promising avenue

2 https://cymulate.com/blog/malware-detection-
techniques/

https://doi.org/10.65025/ICAIC25009

g

mailto:ankita0512ghosh@gmail.com

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 10

for malware detection research, which can better alleviate the

disadvantages created by static-only methods.

Research Questions Formed

RQ1: How can malware be effectively detected from noisy

API call sequences that reflect real-world system behavior?
RQ2: Can a GAN-based model generalize well enough to

identify malware in unseen and diverse datasets?

RQ3: How does dynamic, API-based analysis compare to

static analysis in enhancing the accuracy and robustness of

malware detection systems?

Contributions

• Developed ASTRID, a GAN Model which works to

differentiate between Benign and Malware Data from

Datasets containing noise to mimic real-world system

behaviour.

• Tested on an unseen dataset for checking the

generalizability of the model.

• Improved the robustness of the Model by generating new

malware calls for the model to train, removing the need to

retrain the model on new variants of Malware.

2. Literature Review

One of the major challenges in malware detection is that

noisy API call sequences hide malicious behavior.

Conventional techniques are unable to distinguish good from

bad in noisy environments. New techniques have been

suggested in recent research to overcome the challenge. For

example, the paper "Malware Detection Based on API Call

Sequence Analysis: A Gated Recurrent Unit–Generative

Adversarial Network Model Approach" (Owoh N. , et al.,

2024) presented a hybrid deep learning architecture based on

Gated Recurrent Units (GRUs) and Generative Adversarial

Networks (GANs) to improve malware detection based on

API call sequences. Their framework was better performing,

98.9% accuracy on difficult datasets, than other approaches

such as Bidirectional Long Short-Term Memory (BiLSTM)

and Bidirectional Gated Recurrent Unit (BiGRU). However,

one limitation of this research is that it relies upon a quite

limited dataset, which may influence the extent to which

findings can be representative of larger and more diverse

datasets.

Generative Adversarial Networks (GANs) have drawn

significant attention as to how they are applied in the

detection of malware. An extensive survey, "Generative

Adversarial Networks in Anomaly Detection and Malware

Detection: A Comprehensive Survey" (Hu, Zhang, & Li,

2025) addressed the contribution of GANs to detecting

malware and anomalies, with the authors providing extensive

information on various GAN architectures and their

effectiveness in the detection of malicious activity. This work

provides a broad overview of GAN use in different forms of

malware, thereby further supporting the use of GANs as an

extremely useful cybersecurity tool. However, authors

acknowledge that GANs could require excessive

computational capacity to train, thus becoming less feasible

in real-time malware detection.

The debate between dynamic and static analysis methods for

malware detection continues to be a focal point in

cybersecurity research. Dynamic analysis involves executing

the program in a controlled environment to observe its

behavior, while static analysis examines the code without

execution. A study, "Malware detection with dynamic

evolving graph convolutional networks" (Nguyen, Di Troia,

Ishigaki, & Stamp, 2022), proposed a dynamic evolution

graph convolutional network (DEGCN) model to capture

dynamic evolution patterns of local API-level and global

graph-level software behaviors, achieving good performance

in malware detection. While dynamic analysis provides

deeper insights into malware behaviors, the study highlights

a key shortcoming in that it can be resource-intensive and

slow, making it unsuitable for detecting large-scale malware

threats in real-time.

To improve the robustness of malware detection models, data

augmentation techniques have been employed. A study,

"Improving Android Malware Detection Through Data

Augmentation Using Wasserstein Generative Adversarial

Networks" (Stalin & Mekoya, 2024) explored the use of

Wasserstein Generative Adversarial Networks (WGANs) for

data augmentation in Android malware detection. Their

approach demonstrated a notable performance enhancement

of the classification model, with the highest achieved F1

score reaching 0.975. Despite the strong results, a limitation

of this approach is that it primarily focuses on Android

malware, and the proposed method may not be directly

applicable to other platforms or environments.

The generalizability ability of GAN-based models is crucial

to their success in detecting novel malware variants. "Mal-

D2GAN: Double-Detector based GAN for Malware

Generation" (Thanh, Pham, & Bui, 2025), a recent work

introduced Mal-D2GAN, a double-detector inspired GAN

model that was specifically designed to enhance malware

detectors' resilience against adversarial attacks. Their model

outperformed existing GAN models, confirming the promise

of GANs to generalize to novel and unseen malware variants.

One of the limitations of this model, however, is that it may

not generalize to very dynamic or adversarial environments,

where attacks are designed to be stealthy.

Recent breakthroughs in deep learning, especially the

incorporation of GANs into models such as GRUs and

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research.

11

transformers, have greatly enhanced malware detection from

noisy API call sequences. These works highlight the

significance of combining dynamic analysis, data

augmentation, and strong model architectures for enhancing

the precision and generalization of malware detectors. Yet,

limitations such as the requirement of huge computational

resources, overfitting possibility from limited datasets, and

non-generalizability to different environments are still real

issues to be addressed.

3. Methodology

ASTRID adopts a strict methodology flow to successfully

detect malware from noisy API call sequences with the help

of GAN power for effective detection. The methodology

involves data preprocessing, adversarial training, and

designing model architecture so that the model can

distinguish between benign and malware sequences. In

addition, the evaluation methodology checks the model's

generalization by using an unseen dataset so that it can be

applied in real-world environments. Figure 1 shows the flow

diagram of the methodology used in ASTRID.

Figure 1: Flow Diagram of ASTRID

Dataset
In order to train and test the ASTRID model efficiently, three

datasets are used, one for each role in the process. The first

dataset, Dynamic API Call Sequence, consists of sequences

of dynamic API call Sequences3 in CSV format, both with

benign and malware data marked appropriately. This dataset

has 1,079 benign and 42,797 malware samples and is utilized

during the model training phase to offer useful real-system

behavior sequences on which the model can be trained. The

3https://www.kaggle.com/datasets/ang3loliveira/malware-
analysis-datasets-api-call-sequences

MalBehavD-V1 dataset4, the second dataset in use, deals with

malware behavior and has 1,285 benign and 1,285 malware

sequences. This data set adds diversity to training the model,

covering various malware and their actions in diverse

situations, which is important for developing a strong model

that can detect a broad variety of malicious actions. The third

one, APIMDS Dataset5, is utilized solely for the model's

generalization performance test. This external validation set,

which comprises 3,137 benign, 5,878 unlabelled and 14,131

malware sequences, guarantees that the model's performance

is measured on unseen data, reflecting its stability and

capacity to act well in real-world situations.

With these three datasets, two are kept for training and the

model gets to learn different patterns, while the third one is

an unseen test set for evaluating the generalization of the

model. This ensures that the model is not overfit to the

training data and is able to identify malware in new,

previously unseen patterns correctly.

Dataset Preprocessing

The preprocessing pipeline for the data starts by cleaning the

Dynamic API Call Sequence dataset, in which the `hash`

column is deleted, and rows with missing values are deleted.

The dataset is grouped by malware type to solve the issue of

class imbalance, and a maximum of 4000 samples are taken

from each class. Stratified K-Fold cross-validation is

subsequently used to ensure even class balance across folds,

and the dataset is divided into training and test sets according

to the fold setup. To further address class imbalance in the

training set, SMOTE (Synthetic Minority Over-sampling

Technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is

used to create synthetic samples for the minority class. Lastly,

feature scaling is done with the StandardScaler to scale the

training and test data to a consistent scale for all features. This

preprocessing method prepares the dataset well for model

training with balanced classes and scaled features, thus

enhancing the model's generalization and performance.

Preprocessing for the MalBehavD-V1 Dataset begins with

tokenizing sequences of API calls. In this case, API calls

from different columns are combined into a single string per

sample and tokenized with Keras's `Tokenizer`. It converts

the string sequences into a numeric form that is suitable for

input into machine learning models. Sequences are padded to

a constant length by `pad_sequences` so that all input

sequences are of the same length, with a maximum of 100.

For target labels, One-Hot Encoding (Samuels, 2024) is

employed so as to convert categorical labels into a binary

matrix format and, therefore, convert them into an

4 https://github.com/mpasco/MalbehavD-V1
5 https://ocslab.hksecurity.net/apimds-dataset

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 12

appropriate format for handling classification problems.

Other than text processing, the numerical columns of the

dataset are normalized using Min-Max Scaling (Muhammad

Ali, 2022) such that all the features are within the range [0,

1]. This preprocessing technique is important in order to

normalize the input features, especially for feature scaling-

sensitive models. The dataset is then split into features (`X`)

and target labels (`y`) after preprocessing. This preprocessing

pipeline renders the MalBehavD-V1 dataset machine

learning model-ready with properly tokenized, encoded, and

scaled features to facilitate accurate training and testing.

The Malware API Dataset preprocessing pipeline starts from

reading the data from a CSV file utilizing Python's native

`csv` module. The malware class is mapped to binary labels,

such that "not-a-virus" samples are assigned a label 0

(benign), and the rest are assigned a label 1 (malicious). API

call strings are concatenated into one, space-separated string,

which is added to a list together with the label and SHA256

hash.

Min-Max scaling (Muhammad Ali, 2022) is used on any

numeric columns so that all features are in the range [0, 1],

which is especially helpful for scale-sensitive models. Next,

the API call sequences are tokenized by Keras's `Tokenizer`

to transform each string sequence of API calls into a sequence

of integers corresponding to the words (API calls). The

sequences are subsequently padded to a consistent length of

300 with `pad_sequences` so that the input sequences are all

of the same length. The target labels are One-Hot Encoded

(Samuels, 2024) by `OneHotEncoder`, converting the binary

class labels into a binary matrix form appropriate for multi-

class classification problems.

Dataset Preparation

Training

The dataset preparation starts with normalizing the binary

labels of both datasets. The MalBehavD-V1 dataset and the

Malware API Dataset are normalized as binary values for

labels, where 0 denotes benign and 1 denotes malicious

samples. In the MalBehavD-V1 dataset, API call sequences

are formed by reducing all columns (except index, malware,

and fold) into one string per sample. The Malware API

Dataset also follows the same procedure, wherein sequences

of calls to APIs are formed by concatenating strings of

individual API calls. Then, sequences of both datasets are

tokenized with the help of Keras's Tokenizer, and padding is

done so that both datasets have similar sequence lengths. The

training set is formed by concatenating both datasets'

sequences as well as their labels. Moreover, the test set of the

Malware API Dataset is developed by dividing it into training

and test sets. These sets also contains noise to mimic the real

world scenario to facilitate better generalizability of the

model. The final combined dataset (X_combined and

y_combined) is divided into training, validation, and test

subsets, with the training set being the primary input to model

training. Instances of DataLoader are developed for

facilitating efficient batching of data such that training,

validation, and testing are performance-tuned. The method

utilizes both datasets to their maximum, such that model

training is carried out on a sufficient blend of properly

balanced data. This process is shown in Algorithm 1.

Testing

For APIMDS as Dataset 3, which is held out entirely for

testing, the sequences of API calls are handled in much the

same way as the training datasets. The sequences are first

tokenized using the same tokenizer used on the training data

so that the datasets are consistent. These tokenized sequences

are then padded to a standard length to ensure the input length

of the model. Following tokenization and padding, the target

labels are one-hot encoded to make the data classification-

ready.

The processed Dataset 3 is reserved independently of the

training data to evaluate the model's capacity for generalizing

over unseen examples. The dataset is only employed for

testing the performance of the trained model and verifying

that the outcomes accurately express its applicability in the

real world. By reserving the use of Dataset 3 only for testing,

we are certain that the measures of evaluation (e.g., accuracy,

precision, recall, and F1-score) come from data that the

model has never seen while training, thus reflecting a true

evaluation of its ability to generalize.

Experimental Setup

The experimental configuration for model training consisted

of the use of a Generative Adversarial Network (GAN)

framework. Training was done under the environment of

Google Colab with L4 TPUs support, thus providing the

calculations with a great boost and enabling the processing of

large data in an efficient manner. The configuration played

an important role in handling the large process of model

training, especially through the use of high-dimensional data

such as sequences of API calls.

Hyperparameters used in the current experiment were set to

balance model performance against computational cost. The

embedding size was 128, the recurrent layer's hidden size was

256, and the batch size was 64. The model was trained for 20

iterations with the learning rate held constant at 0.0004 to

facilitate slow convergence. For additional improvement in

the performance of the model, a Dropout regularization has

been used at a rate of 0.3 both in the Generator and in the

Discriminator to avoid overfitting and enhance the

generalization of the model.

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 13

Cross-validation was conducted with Stratified K-Fold (5

folds) to ensure that the performance of the model would be

estimated by using various splits in the data. This enabled the

estimation of the model's robustness and generalizability

across various folds with stable and solid estimates of

performance.

Model Training

The architecture used in this experiment is a Generative

Adversarial Network (GAN) architecture that consists of two

neural networks: the Generator and the Discriminator. The

Generator tries to generate artificial sequences simulating

real API calls, while the Discriminator attempts to distinguish

between real API call sequences from the dataset and the

artificially created ones by the Generator. The adversarial

process between the two components allows the model to

progressively improve in the sense that it can increasingly

discriminate between benign and bad sequences.

The Generator starts by taking random noise as input and

reconstructing it as a sequence of API calls using Gumble-

Softmax Sampling (Li, et al., 2020) as shown in eq (1). It first

inserts the input noise into a continuous space through an

embedding layer, and then feeds this embedded

representation into a GRU (Gated Recurrent Unit) layer.

GRUs are particularly well-suited for sequence data since

they help in capturing time step dependencies, which is

crucial to analyze API calls occurring in sequences. The

output from the GRU layer then undergoes a fully connected

layer to produce the final sequence, which is designed to be

similar to actual API call data.

𝑦 = Softmax (
log(𝑦̂)+𝑔

τ
) eq (1)

Conversely, the Discriminator takes sequences of API calls,
real and fake, and returns a probability indicating whether or
not the sequence is real or fake. Like the Generator, the
Discriminator employs an embedding layer for representing
the input sequence as vectors. These sequences are
subsequently processed through a bidirectional GRU, which
reads the sequence both forward and in reverse to capture
temporal dependencies more exhaustively. The
Discriminator uses multihead attention as well, allowing it to
pay attention to different areas of the sequence at different
times, improving its capacity for recognizing complex
patterns typical of malware activity.

The adversarial training process between the Generator and
Discriminator is where the model learns at its core. The
Generator tries to generate more realistic fake sequences,
and the Discriminator tries to get better at discriminating

real sequences from fake ones. This aligns with the
Wasserstein GAN with Gradient Penalty (WGAN-GP) (Fan, et
al., 2022) framework as shown in eq(2), which stabilizes
training and prevents problems like mode collapse, where
the Generator produces few or repeating sequences.

ℒ𝒟 = 𝐸𝑥∼𝑃𝑥̂

[𝐷(𝑥̂)] − 𝐸𝑥∼𝑃𝑥
[𝐷(𝑥)] + λ ⋅

𝐸𝑥∼𝑃𝑥̂
[(|∇𝑥𝐷(𝑥̂)|2 − 1)2] eq (2)

Both the Discriminator and Generator use the Adam

optimizer, 0.0004 learning rate, and the model is trained for a

total of 20 epochs. The two networks both use regularization

techniques like Dropout to prevent overfitting and improve

Algorithm 1: Dataset Preparation for Training

Input: Dataset 1, Dataset 2
Output: Training, Validation, and Test DataLoader

1. Normalize binary labels:
2. Label the first dataset as 0 for benign and 1 for malicious

samples
3. Label the second dataset as 0 for benign and 1 for

malicious samples
4. Build API call sequences:
5. Join all API call features for each sample in the first dataset
6. Join all API call features for each sample in the second

dataset
7. Tokenization and Padding:
8. Initialize Tokenizer for text sequences
9. Fit tokenizer on both datasets’ API call sequences
10. Convert API call sequences from first dataset into token

sequences
11. Convert API call sequences from second dataset into

token sequences
12. Apply padding to both token sequences to a fixed length
13. Prepare and Clean the second dataset:
14. Join API call features for each sample in the second

dataset
15. Tokenize and pad the API call sequences in the second

dataset
16. Split dataset into training and test:
17. Perform a train-test split for the second dataset, creating

training and test sets
18. Combine datasets:
19. Concatenate tokenized and padded sequences from both

datasets
20. Concatenate corresponding labels from both datasets
21. Split combined data into training, validation, and test sets:
22. Split the combined data into training and temporary sets
23. Split the temporary data into validation and test sets
24. Create DataLoader for training, validation, and test:
25. Create DataLoader for the training set
26. Create DataLoader for the validation set
27. Create DataLoader for the test set
28. Return: Training DataLoader, Validation DataLoader, Test

DataLoader

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 14

the model's generality. Gradient accumulation is also used to

further stabilize the training so that the model is able to

handle higher batch sizes even when under memory

constraints.

Model performance is gauged by some key metrics like

precision, recall, F1 score, AUC (Area Under the Curve), and

accuracy. The AUC metric, in particular, is important in

deciding how the model distinguishes between classes at

every decision boundary. These metrics were tracked during

training and cross-validation to see the model's improvement

over time. This process is shown in Algorithm 2.

Training Process

Training is performed through an adversarial interaction

between the Discriminator and the Generator. The

Discriminator is first trained to effectively classify real and

fake sequences. It is given real API sequences from data and

fake sequences generated by the Generator. The

Discriminator is trained such that it maximizes effective

classification of these sequences, with binary cross-entropy

loss as its objective function. The Generator, on the other

hand, is trained to generate fake sequences that can deceive

the Discriminator into marking them as real. The Generator's

loss is calculated on the output of the Discriminator, as well

as an additional feature matching loss, as shown in eq(3), that

encourages the Generator to create sequences with the same

statistical properties as the real data.

ℒ𝒢 = 𝐸𝑥∼𝑃𝑥
[|𝐹𝑥 − 𝐹𝑥|2] eq (3)

In training, the WGAN-GP loss function is applied to the

Discriminator to apply a Gradient Penalty as shown in eq(4),

ensuring that the training gradients are smooth and improving

the optimization stability. This is extremely crucial in

adversarial cases where the Generator and Discriminator

engage in an endless game of equipping one another.

ℒℊ𝓅 = 𝐸𝑥∼𝑃𝑥̂
[(|∇𝑥𝐷(𝑥̂)|2 − 1)2] eq (4)

As the model was being trained, accuracy and the AUC curve

were monitored across epochs. The first and fifth fold AUC

curves are shown in Figures 2 and 3, respectively, and they

illustrate how the model learned through training to

distinguish between real and fake sequences. The training

accuracy plot also shows steady improvement over time,

showing that the model was learning and improving at

distinguishing malware with accuracy.

Testing

For the test phase, Dataset 3, saved as an unseen test set,
was utilized to test the performance of the model after
training using Datasets 1 and 2. Sequences from Dataset 3
were tokenized and padded to have uniformity with the
training input format. The preprocessed data was then
transformed into PyTorch tensors for ease of utilization
during model testing.

A DataLoader for Dataset 3 was implemented to batch the
data and feed it into the model in the testing phase. The
batch size for testing was the same as that used in training
to ensure equal comparison. This DataLoader served to feed
batches of API call sequence and their labels through the
trained Discriminator for evaluation.

Figure 2: AUC Training Curve in 1st Fold

Algorithm 2: Model Training Procedure

Input: Training Data (X_train), Training Labels (y_train)
Output: Trained generator and discriminator
1. Initialize Generator and Discriminator models
2. Initialize Optimizers (Adam) for both Generator and

Discriminator
3. Initialize Cross-Entropy Loss Function for the

Generator and MSE Loss for the Discriminator
4. For each epoch:
5. for batch in train loader do
6. Train Discriminator:
7. Sample real sequences from X train and generate fake

sequences from Generator
8. Compute the real loss and fake loss using the

Discriminator
9. Compute the Gradient Penalty loss and backpropagate

to update Discriminator
10. Update Discriminator parameters with Adam

optimizer
11. Train Generator:
12. Generate fake sequences using noise input
13. Compute Discriminator output for fake sequences
14. Calculate the Generator loss and feature matching loss
15. Backpropagate and update Generator parameters

with Adam optimizer
16. end for
17. Return: Trained Generator and Discriminator

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 15

The model's performance on Dataset 3 was checked using
critical metrics such as precision, recall, F1 score, AUC (Area
Under the Curve), and accuracy. The choice of these metrics
was to give an all-around view of the model's capacity to
classify malware correctly. The AUC score specifically
calculates the model's capacity to differentiate malicious and
harmless samples for all possible thresholds, giving a better
evaluation of its performance.

Observations

To compare and assess the performance of various models,

the training of BiLSTM (Figure 4), Transformer (Figure 5),

and Vanilla GAN + GRU (Figure 6) models with the same

setup as ASTRID (Figure 1) is done. This involved the same

preprocessing of the dataset, tokenization, padding, and

training process to ensure that the comparison would be fair

across all models. With the same framework and

hyperparameters, it can be more equally compared how well

every model does in malware detection via API call

sequences.

The Transformer model performs best with a high AUC of

approximately 0.98, and has smooth learning throughout the

epochs. Comparatively, the BiLSTM and Vanilla GAN +

GRU models experience some fluctuation in their AUC

curves, with BiLSTM peaking at an AUC of approximately

0.822 and Vanilla GAN + GRU settling at 0.818.

ASTRID also has a very good performance comparable to the

Transformer model with an AUC of 0.98 and a consistent rise

during the training. This shows that the usage WGAN-GP

architecture was successful in identifying malware as well as

having high generalization capability to unknown data and

thus can compare to other state-of-the-art models.

4. Results

Evaluation Criteria

The models have been evaluated based on the following

criteria:

1. Accuracy: It is the proportion of correct predictions

over the total number of instances evaluated (Hossin &

M.N, 2015). It can also be said as the ratio of correct

classifications to the total classifications, as shown in

eq (5).

Accuracy =
TP+TN

Total Samples
 eq (5)

Figure 3: AUC Training Curve in 5st Fold
Figure 4: BiLSTM AUC Training Curve

Figure 6: Transformer AUC Training Curve

Figure 5: Vanilla GAN + GRU AUC Training Curve

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 16

2. Precision: It is the proportion of correctly classified

instances among all the classified instances under a

certain category (Pinto, Gonçalo Oliveira, & Alves,

2016). It can also be said as the ratio of true positives

to that of everything classified as positive, as shown in

eq (6).

Precision =
TP

TP+FP
 eq (6)

3. Recall: It is the proportion of correctly classified

instances under a certain category (Pinto, Gonçalo

Oliveira, & Alves, 2016). It can also be said as the ratio

of true positives to correct classifications. It is also

known as the true positive rate or TPR, as shown in eq

(7).

Recall =
TP

TP+FN
 eq (7)

4. F1 Score: The harmonic mean of precision and recall,

balancing their trade-offs.

Comparative Analysis of Models Trained

Table 1 shows the comparative analysis of the Models

Trained on the dataset and the methodology of ASTRID.

Table 1: Training Data Comparison

Model AUC Accuracy F1 Score

Transformers 0.9938 0.8309 0.8994

BiLSTM 0.8215 0.8007 0.8836

Vanilla GAN +

GRU

0.8160 0.8040 0.8853

ASTRID 0.9878 0.9699 0.9699

Table 2 shows the testing data results

Table 2: Testing Data Comparison

Model AUC Accuracy F1 Score

Transformers 0.9595 0.8646 0.9274

BiLSTM 0.5356 0.8644 0.9273

Vanilla GAN

+ GRU

0.5000 0.8644 0.9273

ASTRID 0.9508 0.9553 0.9541

Overall, the performance data in Tables 1 and 2 demonstrate

the relatively higher performance of the ASTRID model than

the comparative state-of-the-art models during the training

and testing phases. From Table 1, we see that ASTRID

outperformed not just the Transformers, but also the BiLSTM

and Vanilla GAN + GRU models, indicating that the

ASTRID model exhibited superior performance in the

training stage, from learning and generalizing on the training

set.

In Table 2, when testing the models on the test dataset, we

observe that ASTRID again performed well on the other

models, having the highest precision and recall. As evident

from the data and inspection of the Tables, ASTRID has not

only attained good performance during the training phase, but

indeed was able to generalize during the testing phase on the

test data, making this model the best at detecting malware in

this specific case. Meanwhile, even though the Transformer

model performed remarkably (however, no performance data

were presented to surpass ASTRID), the BiLSTM and

Vanilla GAN + GRU models performed much less well

(compared to ASTRID), with larger performance variation

observed primarily in terms of AUC and accuracy.

Comparative Analysis with State-of-the-Art Models

Table 3 Shows the comparison between ASTRID and other

State-of-the-Art Models

ASTRID not only matches or slightly surpasses the highest

classification accuracy obtained by existing models (e.g.,

Transformer), it also achieves better AUC (Area Under the

ROC Curve) whereas existing models obtain either a similar

AUC or worse, demonstrating that ASTRID achieves greater

discriminative ability across models (e.g., essential

predicting classes) when the classification task is revised to

adjust threshold level used (e.g., 0, 0.3, 0.5, 0.8). In summary,

ASTRID is able to show greater discriminative ability

because it trains adversarial synthetic sequences that

incorporate this perturbation to induce better robustness and

generalization into the model, which, to the best of our

knowledge, has been absent in existing literature. Models

such as Random Forest will not only perform poorly with

adversarially perturbed instances but even more sophisticated

architectures (e.g., CNN-LSTM) that are not yet considered

models capable of addressing or tolerating adversarially

perturbed inputs. Therefore, ASTRID explicitly trains on

adversarial perturbation, thus improving resilience and

performance.

5. Conclusion and Future Work

The ASTRID model shows great potential for detecting

malware through API call sequence data. The use of a

Generative Adversarial Network (GAN) approach allows

ASTRID to overcome the challenge of noisy and adversarial

perturbed data, producing strong results in both training and

testing. Inserting adversarial synthetic sequences into the

training set develops a generalisation capacity in models;

however, ASTRID not only develops a generalisation

capacity, but also develops robustness by training explicit

noisy inputs that traditional models do not explicitly train on.

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 17

Table 3: Comparative Analysis of ASTRID with State-of-the-Art Methods

The model performed with a slight drop in AUC to almost

0.98 with an accuracy of 95.53\%. ASTRID reduces false

positives, missing malware, and falsely identifying benign by

being more robust to noisy adversarial conditions, showing a

stronger performance than other state-of-the-art models, such

as BiLSTM, Vanilla GAN + GRU, and Transformer, because

it exhibits higher values for precision and recall in a real-

world malware detection task.

Future Work

There are quite a few areas where ASTRID can improve,

notwithstanding the success of ASTRID. Future work could

investigate the incorporation of more effective attention

mechanisms and transformer-based architectures to further

optimize sequence representation learning. The

generalizability of the model to other platforms and

environments could be evaluated through cross-platform

datasets. Given the nature of malware and its increasing

complexity, eventually, ASTRID could evolve to provide

real-time detection as well as incorporate more challenging

and varied adversarially perturbed datasets to enhance its

robustness. Ultimately, being able to work with real-time

monitoring systems would improve ASTRID's scalability

and use in operational settings.

References

Azeem, M., Khan, D., Iftikhar, S., Bawazeer, S., & Alzahrani, M.

(2024). Analyzing and comparing the effectiveness of malware

detection: A study of machine learning approaches. Heliyon, 10,

e23574. doi:https://doi.org/10.1016/j.heliyon.2023.e23574

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002, June).

SMOTE: Synthetic Minority Over-sampling Technique. J. Artif.

Intell. Res. (JAIR), 16, 321-357. doi:10.1613/jair.953

Dixit, A., & Singh, S. (2023, July). Malware Detection Using

Random Forest., (pp. 1-6).

doi:10.1109/ICCCNT56998.2023.10306628

Fan, J., Yuan, X., Miao, Z., Sun, Z., Mei, X., & Zhou, F. (2022,

January). Full Attention Wasserstein GAN With Gradient

Normalization for Fault Diagnosis Under Imbalanced Data. IEEE

Transactions on Instrumentation and Measurement, 71, 1-1.

doi:10.1109/TIM.2022.3190525

Model Architecture Accuracy Precision Recall F1 Score AUC Notes

(Dixit &

Singh,

2023)

Random Forest

on API counts
98% 0.88 0.89 0.88 0.90

Good on static features,

weak on unseen patterns

(Maniriho,

Mahmood,

&

Chowdhury,

2023)

1D CNN +

LSTM hybrid

on API call

sequences

93% 0.90 0.91 0.90 0.92
Local + sequential feature

capture

(Owoh N. ,

et al., 2024)

GRU + GAN

adversarial

generation

98.9% 0.98 0.99 0.98 0.99

Extremely high accuracy,

but may overfit on similar

distribution

(Li &

Zheng,

2021)

GRU +

Attention on

API call

sequences

94% 0.91 0.92 0.91 0.93
Improved long-sequence

understanding

(Kunwar,

2024)

Transformer

encoder on API

sequences

95% 0.92 0.94 0.93 0.95
Strong global attention,

high memory needs

ASTRID GAN-style

Generator +

Discriminator +

GRU +

Multihead

Attention +

Feature

Matching

95% 0.95 0.95 0.95 0.95

Higher generalization

against unseen dynamic

malware

International Conference on Artificial Intelligence and Cybersecurity 2025
Copyright 2025 © Canadian Tech-Institute for Academic Research. 18

Ge, Q., Yarom, Y., Li, F., & Heiser, G. (2017). Your Processor

Leaks Information - and There's Nothing You Can Do About It.

Your Processor Leaks Information - and There's Nothing You Can

Do About It. Retrieved from https://arxiv.org/abs/1612.04474

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative

Adversarial Networks. Generative Adversarial Networks. Retrieved

from https://arxiv.org/abs/1406.2661

Guri, M., & Bykhovsky, D. (2019). aIR-Jumper: Covert air-gap

exfiltration/infiltration via security cameras & infrared (IR).

Computers & Security, 82, 15-29.

doi:https://doi.org/10.1016/j.cose.2018.11.004

Hossin, M., & M.N, S. (2015, March). A Review on Evaluation

Metrics for Data Classification Evaluations. International Journal

of Data Mining & Knowledge Management Process, 5, 1-11.

doi:10.5121/ijdkp.2015.5201

Hu, X., Zhang, Y., & Li, J. (2025). Generative Adversarial

Networks in Anomaly Detection and Malware Detection: A

Comprehensive Survey. Retrieved from

https://www.researchgate.net/publication/383575896_Generative_

Adversarial_Networks_in_Anomaly_Detection_and_Malware_Det

ection_A_Comprehensive_Survey

Kunwar, P. (2024). PhD Forum: MalFormer001- Multimodal

Transformer Fused Attention based Malware Detector. 2024 IEEE

International Conference on Smart Computing (SMARTCOMP),

(pp. 252-253). doi:10.1109/SMARTCOMP61445.2024.00059

Li, C., & Zheng, J. (2021, May). API Call-Based Malware

Classification Using Recurrent Neural Networks. Journal of Cyber

Security and Mobility. doi:10.13052/jcsm2245-1439.1036

Li, C., Lv, Q., Li, N., Wang, Y., Sun, D., & Qiao, Y. (2022). A Novel

Deep Framework for Dynamic Malware Detection Based on API

Sequence Intrinsic Features. Computers & Security, 116, 102686.

Retrieved from

https://www.sciencedirect.com/science/article/pii/S016740482200

6866

Li, Y., Liu, J., Guozheng, L., Hou, Y., Muyun, M., & Zhang, J.

(2020, April). Gumbel-softmax-based Optimization: A Simple

General Framework for Optimization Problems on Graphs. Gumbel-

softmax-based Optimization: A Simple General Framework for

Optimization Problems on Graphs. doi:10.21203/rs.3.rs-22822/v2

Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. (2023). API-

MalDetect: Automated malware detection framework for windows

based on API calls and deep learning techniques. Journal of

Network and Computer Applications, 218, 103704.

doi:https://doi.org/10.1016/j.jnca.2023.103704

Muhammad Ali, P. (2022, June). Investigating the Impact of Min-

Max Data Normalization on the Regression Performance of K-

Nearest Neighbor with Different Similarity Measurements. ARO-

THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 10, 85-91.

doi:10.14500/aro.10955

Nguyen, H., Di Troia, F., Ishigaki, G., & Stamp, M. (2022).

Generative Adversarial Networks and Image-Based Malware

Classification. Retrieved from https://arxiv.org/abs/2207.00421

Noguchi, A., Sun, X., Lin, S., & Harada, T. (2022). Unsupervised

Learning of Efficient Geometry-Aware Neural Articulated

Representations. Unsupervised Learning of Efficient Geometry-

Aware Neural Articulated Representations. Retrieved from

https://arxiv.org/abs/2204.08839

Owoh, N., Adejoh, J., Hosseinzadeh, S., Ashawa, M., Osamor, J., &

Qureshi, A. (2024). Malware Detection Based on API Call Sequence

Analysis: A Gated Recurrent Unit–Generative Adversarial Network

Model Approach. Future Internet, 16. doi:10.3390/fi16100369

Owoh, N., Adejoh, J., Hosseinzadeh, S., Ashawa, M., Osamor, J., &

Qureshi, A. (2024). Malware Detection Based on API Call Sequence

Analysis: A Gated Recurrent Unit–Generative Adversarial Network

Model Approach. Future Internet, 16, 369. Retrieved from

https://www.mdpi.com/1999-5903/16/10/369

Pinto, A., Gonçalo Oliveira, H., & Alves, A. (2016, June).

Comparing the Performance of Different NLP Toolkits in Formal

and Social Media Text. 51, 3:1-.

doi:10.4230/OASIcs.SLATE.2016.3

Samuels, J. (2024, January). One-Hot Encoding and Two-Hot

Encoding: An Introduction. One-Hot Encoding and Two-Hot

Encoding: An Introduction. doi:10.13140/RG.2.2.21459.76327

Stalin, K., & Mekoya, M. B. (2024). Improving Android Malware

Detection Through Data Augmentation Using Wasserstein

Generative Adversarial Networks. Retrieved from

https://arxiv.org/abs/2403.00890

Thanh, N. H., Pham, T. D., & Bui, L. (2025). Mal-D2GAN: Double-

Detector Based GAN for Malware Generation. Retrieved from

https://arxiv.org/abs/2505.18806

Zhang, Y., Li, X., & Wang, Z. (2023). Malware Detection with

Dynamic Evolving Graph Convolutional Networks. Retrieved from

https://www.researchgate.net/publication/359581210_Malware_det

ection_with_dynamic_evolving_graph_convolutional_networks

Zhou, Y., & Jiang, X. (2012). Dissecting Android Malware:

Characterization and Evolution. 2012 IEEE Symposium on Security

and Privacy, (pp. 95-109). doi:10.1109/SP.2012.16

