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Abstract

This paper introduces ASTRID, a GAN-based model that can
identify malware using API call sequence analysis in noisy
settings, a typical problem in disk forensics. The new framework
addresses the shortcomings of conventional detection approaches
by leveraging adversarial learning to differentiate between
benign and malicious sequences. API call information from two
noisy datasets was utilized to train the model under real-world-
like conditions, while a third, unseen dataset was employed to test
the model's generalization ability. ASTRID achieved an accuracy
of 96.8% on training data and 95.5% on the test dataset, with
performance comparable to state-of-the-art models. These
outcomes demonstrate the power of ASTRID to tackle noise and
provide detection reliability, providing an impressive solution
towards durable malware detection through sequence-based
learning.

1. Introduction

Malware, which stands for malicious software, is any
software that is deliberately created to harm a computer
system, server, client, or network. It encompasses a broad
range of threats, including viruses, worms, ransomware,
trojans, spyware, and adware. Malware has extensive effects,
not just on individual users but also on critical infrastructures
and businesses. A recent real-life case is the 2025 cyberattack
on Marks & Spencer (M&S)!, a major UK retailer, where the
hacking group "Scattered Spider" employed DragonForce
ransomware to breach M&S's IT systems, bringing online
orders to a standstill, disrupting supply chains, and incurring
weekly losses estimated at £15 million.

With the sophistication and frequency of these attacks
increasing, the importance of effective malware detection
mechanisms has never been greater’. Timely and precise
detection is required not only to avert financial loss but also
to maintain data privacy, system integrity, and public trust.
With the increased incidence of zero-day vulnerabilities and
obfuscated malware instances, conventional antivirus
solutions tend to miss threats in real time.

To improve detection functionality, researchers have resorted
to machine learning (ML) methodologies. SVM, Random
Forest, and K-Nearest Neighbors (KNN) have been the most
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common models applied to malware classification in terms of
static and dynamic characteristics (Zhou & Jiang, 2012).
These solutions, even if they exhibit a high success rate in
balanced data sets, generally fail if submitted to new, unseen,
or manipulated samples. Research indicates that ML models
(Azeem, Khan, Iftikhar, Bawazeer, & Alzahrani, 2024) are
susceptible to evasion attacks and not robust enough in real-
world scenarios, restricting their scalability and adaptability.

These limitations are remedied by the introduction of
Generative Adversarial Networks (GANs) as an innovative
solution. Unlike traditional classifiers, GANs are composed
of two neural networks—a generator and a discriminator—
engaged in a competitive learning process, enabling them to
create synthetic data samples that are similar to real ones
(Goodfellow, et al., 2014). In malware detection, GANs can
enhance training data by creating realistic malicious
sequences, thus enhancing generalization and resilience
against new threats. Recent research, including PlausMal-
GAN (Noguchi, Sun, Lin, & Harada, 2022), reveals that
GAN-based architectures perform better than traditional ML
models in identifying advanced malware, particularly for
noisy and imbalanced data.

In the past, API call sequence-based malware detection has
also increased in reputation as compared to standard static
analysis. Static analysis that analyzes binary code or file
signatures without actually executing them does not perform
well against contemporary malware based on obfuscation,
encryption, or polymorphism in covering up its genuine
behavior (Guri & Bykhovsky, 2019). Conversely, dynamic
analysis, particularly API call monitoring, realizes the current
behavior of applications while they engage with system
resources, offering a more robust detection technique against
such evasions. API calls are a form of behavioral fingerprint
that realizes patterns of malicious intent, like unauthorized
access to files, changes to the registry, or communications
over the network. As malware becomes more advanced and
adaptive, examining sequences of API calls enables more
capable, context-specific models that are better able to
generalize in real-world threat scenarios (Ge, Yarom, Li, &
Heiser, 2017). Hence, combining API dynamic analysis with
high-performing models such as GANs is a promising avenue
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for malware detection research, which can better alleviate the
disadvantages created by static-only methods.

Research Questions Formed

RQ1: How can malware be effectively detected from noisy
API call sequences that reflect real-world system behavior?
RQ2: Can a GAN-based model generalize well enough to
identify malware in unseen and diverse datasets?

RQ3: How does dynamic, API-based analysis compare to
static analysis in enhancing the accuracy and robustness of
malware detection systems?

Contributions

e Developed ASTRID, a GAN Model which works to
differentiate between Benign and Malware Data from
Datasets containing noise to mimic real-world system
behaviour.

eTested on an unseen dataset for
generalizability of the model.

o Improved the robustness of the Model by generating new
malware calls for the model to train, removing the need to
retrain the model on new variants of Malware.

checking the

2. Literature Review

One of the major challenges in malware detection is that
noisy API call sequences hide malicious behavior.
Conventional techniques are unable to distinguish good from
bad in noisy environments. New techniques have been
suggested in recent research to overcome the challenge. For
example, the paper "Malware Detection Based on API Call
Sequence Analysis: A Gated Recurrent Unit—Generative
Adversarial Network Model Approach" (Owoh N. , et al.,
2024) presented a hybrid deep learning architecture based on
Gated Recurrent Units (GRUs) and Generative Adversarial
Networks (GANs) to improve malware detection based on
API call sequences. Their framework was better performing,
98.9% accuracy on difficult datasets, than other approaches
such as Bidirectional Long Short-Term Memory (BiLSTM)
and Bidirectional Gated Recurrent Unit (BiGRU). However,
one limitation of this research is that it relies upon a quite
limited dataset, which may influence the extent to which
findings can be representative of larger and more diverse
datasets.

Generative Adversarial Networks (GANs) have drawn
significant attention as to how they are applied in the
detection of malware. An extensive survey, "Generative
Adversarial Networks in Anomaly Detection and Malware
Detection: A Comprehensive Survey" (Hu, Zhang, & Li,
2025) addressed the contribution of GANs to detecting
malware and anomalies, with the authors providing extensive
information on various GAN architectures and their

effectiveness in the detection of malicious activity. This work
provides a broad overview of GAN use in different forms of
malware, thereby further supporting the use of GANs as an
extremely useful cybersecurity tool. However, authors
acknowledge that GANs could require excessive
computational capacity to train, thus becoming less feasible
in real-time malware detection.

The debate between dynamic and static analysis methods for
malware detection continues to be a focal point in
cybersecurity research. Dynamic analysis involves executing
the program in a controlled environment to observe its
behavior, while static analysis examines the code without
execution. A study, "Malware detection with dynamic
evolving graph convolutional networks" (Nguyen, Di Troia,
Ishigaki, & Stamp, 2022), proposed a dynamic evolution
graph convolutional network (DEGCN) model to capture
dynamic evolution patterns of local API-level and global
graph-level software behaviors, achieving good performance
in malware detection. While dynamic analysis provides
deeper insights into malware behaviors, the study highlights
a key shortcoming in that it can be resource-intensive and
slow, making it unsuitable for detecting large-scale malware
threats in real-time.

To improve the robustness of malware detection models, data
augmentation techniques have been employed. A study,
"Improving Android Malware Detection Through Data
Augmentation Using Wasserstein Generative Adversarial
Networks" (Stalin & Mekoya, 2024) explored the use of
Wasserstein Generative Adversarial Networks (WGANSs) for
data augmentation in Android malware detection. Their
approach demonstrated a notable performance enhancement
of the classification model, with the highest achieved F1
score reaching 0.975. Despite the strong results, a limitation
of this approach is that it primarily focuses on Android
malware, and the proposed method may not be directly
applicable to other platforms or environments.

The generalizability ability of GAN-based models is crucial
to their success in detecting novel malware variants. "Mal-
D2GAN: Double-Detector based GAN for Malware
Generation" (Thanh, Pham, & Bui, 2025), a recent work
introduced Mal-D2GAN, a double-detector inspired GAN
model that was specifically designed to enhance malware
detectors' resilience against adversarial attacks. Their model
outperformed existing GAN models, confirming the promise
of GANS to generalize to novel and unseen malware variants.
One of the limitations of this model, however, is that it may
not generalize to very dynamic or adversarial environments,
where attacks are designed to be stealthy.

Recent breakthroughs in deep learning, especially the
incorporation of GANs into models such as GRUs and
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transformers, have greatly enhanced malware detection from
noisy API call sequences. These works highlight the
significance of combining dynamic analysis, data
augmentation, and strong model architectures for enhancing
the precision and generalization of malware detectors. Yet,
limitations such as the requirement of huge computational
resources, overfitting possibility from limited datasets, and
non-generalizability to different environments are still real
issues to be addressed.

3. Methodology

ASTRID adopts a strict methodology flow to successfully
detect malware from noisy API call sequences with the help
of GAN power for effective detection. The methodology
involves data preprocessing, adversarial training, and
designing model architecture so that the model can
distinguish between benign and malware sequences. In
addition, the evaluation methodology checks the model's
generalization by using an unseen dataset so that it can be
applied in real-world environments. Figure 1 shows the flow
diagram of the methodology used in ASTRID.

Malware Detection Using GAN Architecture

DATA COLLECTION

Dataset 1 Dataset2 Dataset 3
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Figure 1: Flow Diagram of ASTRID

Dataset

In order to train and test the ASTRID model efficiently, three
datasets are used, one for each role in the process. The first
dataset, Dynamic API Call Sequence, consists of sequences
of dynamic API call Sequences® in CSV format, both with
benign and malware data marked appropriately. This dataset
has 1,079 benign and 42,797 malware samples and is utilized
during the model training phase to offer useful real-system
behavior sequences on which the model can be trained. The

3https://www.kaggle.com/datasets/ang3loliveira/malware-
analysis-datasets-api-call-sequences

MalBehavD-V1 dataset*, the second dataset in use, deals with
malware behavior and has 1,285 benign and 1,285 malware
sequences. This data set adds diversity to training the model,
covering various malware and their actions in diverse
situations, which is important for developing a strong model
that can detect a broad variety of malicious actions. The third
one, APIMDS Dataset®, is utilized solely for the model's
generalization performance test. This external validation set,
which comprises 3,137 benign, 5,878 unlabelled and 14,131
malware sequences, guarantees that the model's performance
is measured on unseen data, reflecting its stability and
capacity to act well in real-world situations.

With these three datasets, two are kept for training and the
model gets to learn different patterns, while the third one is
an unseen test set for evaluating the generalization of the
model. This ensures that the model is not overfit to the
training data and is able to identify malware in new,
previously unseen patterns correctly.

Dataset Preprocessing

The preprocessing pipeline for the data starts by cleaning the
Dynamic API Call Sequence dataset, in which the ‘hash’
column is deleted, and rows with missing values are deleted.
The dataset is grouped by malware type to solve the issue of
class imbalance, and a maximum of 4000 samples are taken
from each class. Stratified K-Fold cross-validation is
subsequently used to ensure even class balance across folds,
and the dataset is divided into training and test sets according
to the fold setup. To further address class imbalance in the
training set, SMOTE (Synthetic Minority Over-sampling
Technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is
used to create synthetic samples for the minority class. Lastly,
feature scaling is done with the StandardScaler to scale the
training and test data to a consistent scale for all features. This
preprocessing method prepares the dataset well for model
training with balanced classes and scaled features, thus
enhancing the model's generalization and performance.

Preprocessing for the MalBehavD-V1 Dataset begins with
tokenizing sequences of API calls. In this case, API calls
from different columns are combined into a single string per
sample and tokenized with Keras's "Tokenizer'. It converts
the string sequences into a numeric form that is suitable for
input into machine learning models. Sequences are padded to
a constant length by ‘pad sequences’ so that all input
sequences are of the same length, with a maximum of 100.
For target labels, One-Hot Encoding (Samuels, 2024) is
employed so as to convert categorical labels into a binary
matrix format and, therefore, convert them into an

4 https://github.com/mpasco/MalbehavD-V1
5 https://ocslab.hksecurity.net/apimds-dataset
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appropriate format for handling classification problems.
Other than text processing, the numerical columns of the
dataset are normalized using Min-Max Scaling (Muhammad
Ali, 2022) such that all the features are within the range [0,
1]. This preprocessing technique is important in order to
normalize the input features, especially for feature scaling-
sensitive models. The dataset is then split into features ("X")
and target labels ('y") after preprocessing. This preprocessing
pipeline renders the MalBehavD-V1 dataset machine
learning model-ready with properly tokenized, encoded, and
scaled features to facilitate accurate training and testing.

The Malware API Dataset preprocessing pipeline starts from
reading the data from a CSV file utilizing Python's native
‘csv' module. The malware class is mapped to binary labels,
such that "not-a-virus" samples are assigned a label 0
(benign), and the rest are assigned a label 1 (malicious). API
call strings are concatenated into one, space-separated string,
which is added to a list together with the label and SHA256
hash.

Min-Max scaling (Muhammad Ali, 2022) is used on any
numeric columns so that all features are in the range [0, 1],
which is especially helpful for scale-sensitive models. Next,
the API call sequences are tokenized by Keras's “Tokenizer
to transform each string sequence of API calls into a sequence
of integers corresponding to the words (API calls). The
sequences are subsequently padded to a consistent length of
300 with "pad_sequences’ so that the input sequences are all
of the same length. The target labels are One-Hot Encoded
(Samuels, 2024) by ‘OneHotEncoder’, converting the binary
class labels into a binary matrix form appropriate for multi-
class classification problems.

Dataset Preparation

Training

The dataset preparation starts with normalizing the binary
labels of both datasets. The MalBehavD-V1 dataset and the
Malware API Dataset are normalized as binary values for
labels, where 0 denotes benign and 1 denotes malicious
samples. In the MalBehavD-V1 dataset, API call sequences
are formed by reducing all columns (except index, malware,
and fold) into one string per sample. The Malware API
Dataset also follows the same procedure, wherein sequences
of calls to APIs are formed by concatenating strings of
individual API calls. Then, sequences of both datasets are
tokenized with the help of Keras's Tokenizer, and padding is
done so that both datasets have similar sequence lengths. The
training set is formed by concatenating both datasets'
sequences as well as their labels. Moreover, the test set of the
Malware API Dataset is developed by dividing it into training
and test sets. These sets also contains noise to mimic the real
world scenario to facilitate better generalizability of the

model. The final combined dataset (X combined and
y_combined) is divided into training, validation, and test
subsets, with the training set being the primary input to model
training. Instances of Dataloader are developed for
facilitating efficient batching of data such that training,
validation, and testing are performance-tuned. The method
utilizes both datasets to their maximum, such that model
training is carried out on a sufficient blend of properly
balanced data. This process is shown in Algorithm 1.

Testing

For APIMDS as Dataset 3, which is held out entirely for
testing, the sequences of API calls are handled in much the
same way as the training datasets. The sequences are first
tokenized using the same tokenizer used on the training data
so that the datasets are consistent. These tokenized sequences
are then padded to a standard length to ensure the input length
of the model. Following tokenization and padding, the target
labels are one-hot encoded to make the data classification-
ready.

The processed Dataset 3 is reserved independently of the
training data to evaluate the model's capacity for generalizing
over unseen examples. The dataset is only employed for
testing the performance of the trained model and verifying
that the outcomes accurately express its applicability in the
real world. By reserving the use of Dataset 3 only for testing,
we are certain that the measures of evaluation (e.g., accuracy,
precision, recall, and Fl-score) come from data that the
model has never seen while training, thus reflecting a true
evaluation of its ability to generalize.

Experimental Setup

The experimental configuration for model training consisted
of the use of a Generative Adversarial Network (GAN)
framework. Training was done under the environment of
Google Colab with L4 TPUs support, thus providing the
calculations with a great boost and enabling the processing of
large data in an efficient manner. The configuration played
an important role in handling the large process of model
training, especially through the use of high-dimensional data
such as sequences of API calls.

Hyperparameters used in the current experiment were set to
balance model performance against computational cost. The
embedding size was 128, the recurrent layer's hidden size was
256, and the batch size was 64. The model was trained for 20
iterations with the learning rate held constant at 0.0004 to
facilitate slow convergence. For additional improvement in
the performance of the model, a Dropout regularization has
been used at a rate of 0.3 both in the Generator and in the
Discriminator to avoid overfitting and enhance the
generalization of the model.
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Cross-validation was conducted with Stratified K-Fold (5
folds) to ensure that the performance of the model would be
estimated by using various splits in the data. This enabled the
estimation of the model's robustness and generalizability
across various folds with stable and solid estimates of
performance.

Model Training

The architecture used in this experiment is a Generative
Adversarial Network (GAN) architecture that consists of two
neural networks: the Generator and the Discriminator. The
Generator tries to generate artificial sequences simulating
real API calls, while the Discriminator attempts to distinguish
between real API call sequences from the dataset and the
artificially created ones by the Generator. The adversarial
process between the two components allows the model to
progressively improve in the sense that it can increasingly
discriminate between benign and bad sequences.

The Generator starts by taking random noise as input and
reconstructing it as a sequence of API calls using Gumble-
Softmax Sampling (L1, et al., 2020) as shown in eq (1). It first
inserts the input noise into a continuous space through an
embedding layer, and then feeds this embedded
representation into a GRU (Gated Recurrent Unit) layer.
GRUs are particularly well-suited for sequence data since
they help in capturing time step dependencies, which is
crucial to analyze API calls occurring in sequences. The
output from the GRU layer then undergoes a fully connected
layer to produce the final sequence, which is designed to be
similar to actual API call data.

y = Softmax (—log(?w) eq (1)
Conversely, the Discriminator takes sequences of API calls,
real and fake, and returns a probability indicating whether or
not the sequence is real or fake. Like the Generator, the
Discriminator employs an embedding layer for representing
the input sequence as vectors. These sequences are
subsequently processed through a bidirectional GRU, which
reads the sequence both forward and in reverse to capture
temporal dependencies more  exhaustively. The
Discriminator uses multihead attention as well, allowing it to
pay attention to different areas of the sequence at different
times, improving its capacity for recognizing complex
patterns typical of malware activity.

The adversarial training process between the Generator and
Discriminator is where the model learns at its core. The
Generator tries to generate more realistic fake sequences,
and the Discriminator tries to get better at discriminating

Algorithm 1: Dataset Preparation for Training

Input: Dataset 1, Dataset 2
Output: Training, Validation, and Test DataLoader
Normalize binary labels:
Label the first dataset as O for benign and 1 for malicious
samples
Label the second dataset as 0 for benign and 1 for
malicious samples
Build API call sequences:
Join all API call features for each sample in the first dataset
Join all API call features for each sample in the second
dataset
Tokenization and Padding:
Initialize Tokenizer for text sequences
Fit tokenizer on both datasets’ API call sequences

. Convert API call sequences from first dataset into token
sequences

. Convert API call sequences from second dataset into
token sequences

. Apply padding to both token sequences to a fixed length

. Prepare and Clean the second dataset:

. Join API call features for each sample in the second
dataset

. Tokenize and pad the API call sequences in the second
dataset

. Split dataset into training and test:

. Perform a train-test split for the second dataset, creating
training and test sets

. Combine datasets:

. Concatenate tokenized and padded sequences from both
datasets

. Concatenate corresponding labels from both datasets

. Split combined data into training, validation, and test sets:

. Split the combined data into training and temporary sets

. Split the temporary data into validation and test sets

. Create Dataloader for training, validation, and test:

. Create Dataloader for the training set

. Create Dataloader for the validation set

. Create Dataloader for the test set

. Return: Training DatalLoader, Validation Dataloader, Test
DatalLoader

real sequences from fake ones. This aligns with the
Wasserstein GAN with Gradient Penalty (WGAN-GP) (Fan, et
al.,, 2022) framework as shown in eq(2), which stabilizes
training and prevents problems like mode collapse, where
the Generator produces few or repeating sequences.

Ly = Egp [D(X)] = Ex-p, [DC)] + A

Egp [(IVeD()|; — 1?] eq (2)

Both the Discriminator and Generator use the Adam
optimizer, 0.0004 learning rate, and the model is trained for a
total of 20 epochs. The two networks both use regularization
techniques like Dropout to prevent overfitting and improve
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Algorithm 2: Model Training Procedure
Input: Training Data (X_train), Training Labels (y_train)
Output: Trained generator and discriminator
1. Initialize Generator and Discriminator models
2. Initialize Optimizers (Adam) for both Generator and
Discriminator
3. Initialize Cross-Entropy Loss Function for the
Generator and MSE Loss for the Discriminator
For each epoch:
for batch in train loader do
Train Discriminator:
Sample real sequences from X train and generate fake
sequences from Generator
Compute the real loss and fake loss using the
Discriminator
9. Compute the Gradient Penalty loss and backpropagate
to update Discriminator
10.Update Discriminator
optimizer
11. Train Generator:
12. Generate fake sequences using noise input
13. Compute Discriminator output for fake sequences
14. Calculate the Generator loss and feature matching loss
15. Backpropagate and update Generator parameters
with Adam optimizer
16. end for
17. Return: Trained Generator and Discriminator

Nouk~

©

parameters with Adam

the model's generality. Gradient accumulation is also used to
further stabilize the training so that the model is able to
handle higher batch sizes even when under memory
constraints.

Model performance is gauged by some key metrics like
precision, recall, F1 score, AUC (Area Under the Curve), and
accuracy. The AUC metric, in particular, is important in
deciding how the model distinguishes between classes at
every decision boundary. These metrics were tracked during
training and cross-validation to see the model's improvement
over time. This process is shown in Algorithm 2.

Training Process

Training is performed through an adversarial interaction
between the Discriminator and the Generator. The
Discriminator is first trained to effectively classify real and
fake sequences. It is given real API sequences from data and
fake sequences generated by the Generator. The
Discriminator is trained such that it maximizes effective
classification of these sequences, with binary cross-entropy
loss as its objective function. The Generator, on the other
hand, is trained to generate fake sequences that can deceive
the Discriminator into marking them as real. The Generator's
loss is calculated on the output of the Discriminator, as well
as an additional feature matching loss, as shown in eq(3), that

encourages the Generator to create sequences with the same

statistical properties as the real data.
Lg = Ex~Px[|Fx_F)?|2] €q (3)

In training, the WGAN-GP loss function is applied to the

Discriminator to apply a Gradient Penalty as shown in eq(4),

ensuring that the training gradients are smooth and improving

the optimization stability. This is extremely crucial in

adversarial cases where the Generator and Discriminator
engage in an endless game of equipping one another.

Lyp = Eep[(IVeD®); — D?] eq(d)

As the model was being trained, accuracy and the AUC curve
were monitored across epochs. The first and fifth fold AUC
curves are shown in Figures 2 and 3, respectively, and they
illustrate how the model learned through training to
distinguish between real and fake sequences. The training
accuracy plot also shows steady improvement over time,
showing that the model was learning and improving at
distinguishing malware with accuracy.

AUC Curve

—e— AUC

AUC

25 5.0 75 10.0 125 15.0 17.5 20.0
Epochs

Figure 2: AUC Training Curve in Ist Fold

Testing

For the test phase, Dataset 3, saved as an unseen test set,
was utilized to test the performance of the model after
training using Datasets 1 and 2. Sequences from Dataset 3
were tokenized and padded to have uniformity with the
training input format. The preprocessed data was then
transformed into PyTorch tensors for ease of utilization
during model testing.

A Dataloader for Dataset 3 was implemented to batch the
data and feed it into the model in the testing phase. The
batch size for testing was the same as that used in training
to ensure equal comparison. This DataLoader served to feed
batches of API call sequence and their labels through the
trained Discriminator for evaluation.
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AUC Curve

—8— AUC
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Figure 3: AUC Training Curve in 5st Fold

The model's performance on Dataset 3 was checked using
critical metrics such as precision, recall, F1 score, AUC (Area
Under the Curve), and accuracy. The choice of these metrics
was to give an all-around view of the model's capacity to
classify malware correctly. The AUC score specifically
calculates the model's capacity to differentiate malicious and
harmless samples for all possible thresholds, giving a better
evaluation of its performance.

Observations

To compare and assess the performance of various models,
the training of BiLSTM (Figure 4), Transformer (Figure 5),
and Vanilla GAN + GRU (Figure 6) models with the same
setup as ASTRID (Figure 1) is done. This involved the same
preprocessing of the dataset, tokenization, padding, and
training process to ensure that the comparison would be fair
across all models. With the same framework and
hyperparameters, it can be more equally compared how well
every model does in malware detection via API call
sequences.

The Transformer model performs best with a high AUC of
approximately 0.98, and has smooth learning throughout the
epochs. Comparatively, the BILSTM and Vanilla GAN +
GRU models experience some fluctuation in their AUC
curves, with BILSTM peaking at an AUC of approximately
0.822 and Vanilla GAN + GRU settling at 0.818.

ASTRID also has a very good performance comparable to the
Transformer model with an AUC of 0.98 and a consistent rise
during the training. This shows that the usage WGAN-GP
architecture was successful in identifying malware as well as
having high generalization capability to unknown data and
thus can compare to other state-of-the-art models.

BiLSTM AUC Curve
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Figure 4: BILSTM AUC Training Curve

GRU-Discriminator AUC Curve
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Figure 5: Vanilla GAN + GRU AUC Training Curve

Transformer AUC Curve
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Figure 6: Transformer AUC Training Curve

4. Results

Evaluation Criteria

The models have been evaluated based on the following
criteria:

1. Accuracy: It is the proportion of correct predictions

over the total number of instances evaluated (Hossin &

M.N, 2015). It can also be said as the ratio of correct

classifications to the total classifications, as shown in

eq (5).

TP+TN

Accuracy = ————
y Total Samples

eq (5)
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2. Precision: It is the proportion of correctly classified
instances among all the classified instances under a
certain category (Pinto, Gongalo Oliveira, & Alves,
2016). It can also be said as the ratio of true positives
to that of everything classified as positive, as shown in

eq (6).

TP
TP+FP

Precision = eq (6)

3. Recall: It is the proportion of correctly classified
instances under a certain category (Pinto, Gongalo
Oliveira, & Alves, 2016). It can also be said as the ratio
of true positives to correct classifications. It is also
known as the true positive rate or TPR, as shown in eq

().

TP
TP+FN

Recall = eq (7)

4. F1 Score: The harmonic mean of precision and recall,
balancing their trade-offs.

Comparative Analysis of Models Trained

Table 1 shows the comparative analysis of the Models
Trained on the dataset and the methodology of ASTRID.

Table 1: Training Data Comparison

Model AUC Accuracy | FI Score
Transformers 0.9938 0.8309 0.8994
BiLSTM 0.8215 0.8007 0.8836
Vanilla GAN + | 0.8160 0.8040 0.8853
GRU
ASTRID 0.9878 0.9699 0.9699
Table 2 shows the testing data results
Table 2: Testing Data Comparison
Model AUC Accuracy F1 Score
Transformers | 0.9595 0.8646 0.9274
BiLSTM 0.5356 0.8644 0.9273
Vanilla GAN | 0.5000 0.8644 0.9273
+ GRU
ASTRID 0.9508 0.9553 0.9541

Overall, the performance data in Tables 1 and 2 demonstrate
the relatively higher performance of the ASTRID model than
the comparative state-of-the-art models during the training
and testing phases. From Table 1, we see that ASTRID
outperformed not just the Transformers, but also the BILSTM
and Vanilla GAN + GRU models, indicating that the

ASTRID model exhibited superior performance in the
training stage, from learning and generalizing on the training
set.

In Table 2, when testing the models on the test dataset, we
observe that ASTRID again performed well on the other
models, having the highest precision and recall. As evident
from the data and inspection of the Tables, ASTRID has not
only attained good performance during the training phase, but
indeed was able to generalize during the testing phase on the
test data, making this model the best at detecting malware in
this specific case. Meanwhile, even though the Transformer
model performed remarkably (however, no performance data
were presented to surpass ASTRID), the BiLSTM and
Vanilla GAN + GRU models performed much less well
(compared to ASTRID), with larger performance variation
observed primarily in terms of AUC and accuracy.

Comparative Analysis with State-of-the-Art Models

Table 3 Shows the comparison between ASTRID and other
State-of-the-Art Models

ASTRID not only matches or slightly surpasses the highest
classification accuracy obtained by existing models (e.g.,
Transformer), it also achieves better AUC (Area Under the
ROC Curve) whereas existing models obtain either a similar
AUC or worse, demonstrating that ASTRID achieves greater
discriminative ability across models (e.g., essential
predicting classes) when the classification task is revised to
adjust threshold level used (e.g., 0, 0.3, 0.5, 0.8). In summary,
ASTRID is able to show greater discriminative ability
because it trains adversarial synthetic sequences that
incorporate this perturbation to induce better robustness and
generalization into the model, which, to the best of our
knowledge, has been absent in existing literature. Models
such as Random Forest will not only perform poorly with
adversarially perturbed instances but even more sophisticated
architectures (e.g., CNN-LSTM) that are not yet considered
models capable of addressing or tolerating adversarially
perturbed inputs. Therefore, ASTRID explicitly trains on
adversarial perturbation, thus improving resilience and
performance.

5. Conclusion and Future Work

The ASTRID model shows great potential for detecting
malware through API call sequence data. The use of a
Generative Adversarial Network (GAN) approach allows
ASTRID to overcome the challenge of noisy and adversarial
perturbed data, producing strong results in both training and
testing. Inserting adversarial synthetic sequences into the
training set develops a generalisation capacity in models;
however, ASTRID not only develops a generalisation
capacity, but also develops robustness by training explicit
noisy inputs that traditional models do not explicitly train on.
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Table 3: Comparative Analysis of ASTRID with State-of-the-Art Methods

Model Architecture Accuracy | Precision | Recall | F1 Score | AUC Notes
(Dixit & .
Singh, Random Forest 98% 0.88 0.89 0.88 0.90 Good on static features,
on API counts weak on unseen patterns
2023)
Mahmood, | < 1DCNN*
9 b + .
& LSTM hybrid 93% 0.90 091 0.90 0.92 Local + sequential feature
on API call capture
Chowdhury, sequences
2023) q
(Owoh N. , GRU + GAN Extremely high accuracy,
et al., 2024) adversarial 98.9% 0.98 0.99 0.98 0.99 | but may overfit on similar
generation distribution
(Li& GRU +
Zheng, Attention on o Improved long-sequence
2021) API call 4% 0.91 0.92 091 0.93 understanding
sequences
(Kunwar, Transformer .
2024) | encoderon API |  95% 0.92 0.94 0.93 0.95 |Strong global attention,
high memory needs
sequences
ASTRID GAN-style
Generator +
S N
Dlscgg;}l itor Higher generalization
0 . .
Multihead 95% 0.95 0.95 0.95 0.95 ?ng;mz‘; . unseen dynamic
Attention + W
Feature
Matching

The model performed with a slight drop in AUC to almost
0.98 with an accuracy of 95.53\%. ASTRID reduces false
positives, missing malware, and falsely identifying benign by
being more robust to noisy adversarial conditions, showing a
stronger performance than other state-of-the-art models, such
as BiLSTM, Vanilla GAN + GRU, and Transformer, because
it exhibits higher values for precision and recall in a real-
world malware detection task.

Future Work

There are quite a few areas where ASTRID can improve,
notwithstanding the success of ASTRID. Future work could
investigate the incorporation of more effective attention
mechanisms and transformer-based architectures to further
optimize  sequence  representation  learning.  The
generalizability of the model to other platforms and
environments could be evaluated through cross-platform
datasets. Given the nature of malware and its increasing
complexity, eventually, ASTRID could evolve to provide
real-time detection as well as incorporate more challenging
and varied adversarially perturbed datasets to enhance its

robustness. Ultimately, being able to work with real-time
monitoring systems would improve ASTRID's scalability
and use in operational settings.
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