
International Conference on Artificial Intelligence and Cybersecurity 2025 
Copyright 2025 © Canadian Tech-Institute for Academic Research.  

9 

ASTRID: API Sequence Threat Recognition with Intelligent Discrimination 

Ankita Ghosh 

Indira Gandhi Delhi Technical University for Women, Delhi, India 
ankita0512ghosh@gmail.com  

 
 
Abstract  

This paper introduces ASTRID, a GAN-based model that can 
identify malware using API call sequence analysis in noisy 
settings, a typical problem in disk forensics. The new framework 
addresses the shortcomings of conventional detection approaches 
by leveraging adversarial learning to differentiate between 
benign and malicious sequences. API call information from two 
noisy datasets was utilized to train the model under real-world-
like conditions, while a third, unseen dataset was employed to test 
the model's generalization ability. ASTRID achieved an accuracy 
of 96.8% on training data and 95.5% on the test dataset, with 
performance comparable to state-of-the-art models. These 
outcomes demonstrate the power of ASTRID to tackle noise and 
provide detection reliability, providing an impressive solution 
towards durable malware detection through sequence-based 
learning. 

1. Introduction 

Malware, which stands for malicious software, is any 

software that is deliberately created to harm a computer 

system, server, client, or network. It encompasses a broad 

range of threats, including viruses, worms, ransomware, 

trojans, spyware, and adware. Malware has extensive effects, 

not just on individual users but also on critical infrastructures 

and businesses. A recent real-life case is the 2025 cyberattack 

on Marks & Spencer (M&S)1, a major UK retailer, where the 

hacking group "Scattered Spider" employed DragonForce 

ransomware to breach M&S's IT systems, bringing online 

orders to a standstill, disrupting supply chains, and incurring 

weekly losses estimated at £15 million. 

 

With the sophistication and frequency of these attacks 

increasing, the importance of effective malware detection 

mechanisms has never been greater2. Timely and precise 

detection is required not only to avert financial loss but also 

to maintain data privacy, system integrity, and public trust. 

With the increased incidence of zero-day vulnerabilities and 

obfuscated malware instances, conventional antivirus 

solutions tend to miss threats in real time. 

 

To improve detection functionality, researchers have resorted 

to machine learning (ML) methodologies. SVM, Random 

Forest, and K-Nearest Neighbors (KNN) have been the most 

 
1https://www.theguardian.com/business/2025/may/03/insi
de-the-marks-and-spencer-cyber-attack-chaos 

common models applied to malware classification in terms of 

static and dynamic characteristics (Zhou & Jiang, 2012). 

These solutions, even if they exhibit a high success rate in 

balanced data sets, generally fail if submitted to new, unseen, 

or manipulated samples. Research indicates that ML models 

(Azeem, Khan, Iftikhar, Bawazeer, & Alzahrani, 2024) are 

susceptible to evasion attacks and not robust enough in real-

world scenarios, restricting their scalability and adaptability. 

 

These limitations are remedied by the introduction of 

Generative Adversarial Networks (GANs) as an innovative 

solution. Unlike traditional classifiers, GANs are composed 

of two neural networks—a generator and a discriminator—

engaged in a competitive learning process, enabling them to 

create synthetic data samples that are similar to real ones 

(Goodfellow, et al., 2014). In malware detection, GANs can 

enhance training data by creating realistic malicious 

sequences, thus enhancing generalization and resilience 

against new threats. Recent research, including PlausMal-

GAN (Noguchi, Sun, Lin, & Harada, 2022), reveals that 

GAN-based architectures perform better than traditional ML 

models in identifying advanced malware, particularly for 

noisy and imbalanced data.  

 

In the past, API call sequence-based malware detection has 

also increased in reputation as compared to standard static 

analysis. Static analysis that analyzes binary code or file 

signatures without actually executing them does not perform 

well against contemporary malware based on obfuscation, 

encryption, or polymorphism in covering up its genuine 

behavior (Guri & Bykhovsky, 2019). Conversely, dynamic 

analysis, particularly API call monitoring, realizes the current 

behavior of applications while they engage with system 

resources, offering a more robust detection technique against 

such evasions. API calls are a form of behavioral fingerprint 

that realizes patterns of malicious intent, like unauthorized 

access to files, changes to the registry, or communications 

over the network. As malware becomes more advanced and 

adaptive, examining sequences of API calls enables more 

capable, context-specific models that are better able to 

generalize in real-world threat scenarios (Ge, Yarom, Li, & 

Heiser, 2017). Hence, combining API dynamic analysis with 

high-performing models such as GANs is a promising avenue 

2 https://cymulate.com/blog/malware-detection-
techniques/ 
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for malware detection research, which can better alleviate the 

disadvantages created by static-only methods. 

Research Questions Formed 

RQ1: How can malware be effectively detected from noisy 

API call sequences that reflect real-world system behavior? 
RQ2: Can a GAN-based model generalize well enough to 

identify malware in unseen and diverse datasets? 

RQ3: How does dynamic, API-based analysis compare to 

static analysis in enhancing the accuracy and robustness of 

malware detection systems? 

Contributions 

• Developed ASTRID, a GAN Model which works to 

differentiate between Benign and Malware Data from 

Datasets containing noise to mimic real-world system 

behaviour. 

• Tested on an unseen dataset for checking the 

generalizability of the model. 

• Improved the robustness of the Model by generating new 

malware calls for the model to train, removing the need to 

retrain the model on new variants of Malware. 

2. Literature Review 

One of the major challenges in malware detection is that 

noisy API call sequences hide malicious behavior. 

Conventional techniques are unable to distinguish good from 

bad in noisy environments. New techniques have been 

suggested in recent research to overcome the challenge. For 

example, the paper "Malware Detection Based on API Call 

Sequence Analysis: A Gated Recurrent Unit–Generative 

Adversarial Network Model Approach" (Owoh N. , et al., 

2024) presented a hybrid deep learning architecture based on 

Gated Recurrent Units (GRUs) and Generative Adversarial 

Networks (GANs) to improve malware detection based on 

API call sequences. Their framework was better performing, 

98.9% accuracy on difficult datasets, than other approaches 

such as Bidirectional Long Short-Term Memory (BiLSTM) 

and Bidirectional Gated Recurrent Unit (BiGRU). However, 

one limitation of this research is that it relies upon a quite 

limited dataset, which may influence the extent to which 

findings can be representative of larger and more diverse 

datasets. 

 

Generative Adversarial Networks (GANs) have drawn 

significant attention as to how they are applied in the 

detection of malware. An extensive survey, "Generative 

Adversarial Networks in Anomaly Detection and Malware 

Detection: A Comprehensive Survey" (Hu, Zhang, & Li, 

2025) addressed the contribution of GANs to detecting 

malware and anomalies, with the authors providing extensive 

information on various GAN architectures and their 

effectiveness in the detection of malicious activity. This work 

provides a broad overview of GAN use in different forms of 

malware, thereby further supporting the use of GANs as an 

extremely useful cybersecurity tool. However, authors 

acknowledge that GANs could require excessive 

computational capacity to train, thus becoming less feasible 

in real-time malware detection. 

 

The debate between dynamic and static analysis methods for 

malware detection continues to be a focal point in 

cybersecurity research. Dynamic analysis involves executing 

the program in a controlled environment to observe its 

behavior, while static analysis examines the code without 

execution. A study, "Malware detection with dynamic 

evolving graph convolutional networks" (Nguyen, Di Troia, 

Ishigaki, & Stamp, 2022), proposed a dynamic evolution 

graph convolutional network (DEGCN) model to capture 

dynamic evolution patterns of local API-level and global 

graph-level software behaviors, achieving good performance 

in malware detection. While dynamic analysis provides 

deeper insights into malware behaviors, the study highlights 

a key shortcoming in that it can be resource-intensive and 

slow, making it unsuitable for detecting large-scale malware 

threats in real-time. 

 

To improve the robustness of malware detection models, data 

augmentation techniques have been employed. A study, 

"Improving Android Malware Detection Through Data 

Augmentation Using Wasserstein Generative Adversarial 

Networks" (Stalin & Mekoya, 2024) explored the use of 

Wasserstein Generative Adversarial Networks (WGANs) for 

data augmentation in Android malware detection. Their 

approach demonstrated a notable performance enhancement 

of the classification model, with the highest achieved F1 

score reaching 0.975. Despite the strong results, a limitation 

of this approach is that it primarily focuses on Android 

malware, and the proposed method may not be directly 

applicable to other platforms or environments. 

 

The generalizability ability of GAN-based models is crucial 

to their success in detecting novel malware variants. "Mal-

D2GAN: Double-Detector based GAN for Malware 

Generation" (Thanh, Pham, & Bui, 2025), a recent work 

introduced Mal-D2GAN, a double-detector inspired GAN 

model that was specifically designed to enhance malware 

detectors' resilience against adversarial attacks. Their model 

outperformed existing GAN models, confirming the promise 

of GANs to generalize to novel and unseen malware variants. 

One of the limitations of this model, however, is that it may 

not generalize to very dynamic or adversarial environments, 

where attacks are designed to be stealthy. 

 

Recent breakthroughs in deep learning, especially the 

incorporation of GANs into models such as GRUs and 
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transformers, have greatly enhanced malware detection from 

noisy API call sequences. These works highlight the 

significance of combining dynamic analysis, data 

augmentation, and strong model architectures for enhancing 

the precision and generalization of malware detectors. Yet, 

limitations such as the requirement of huge computational 

resources, overfitting possibility from limited datasets, and 

non-generalizability to different environments are still real 

issues to be addressed. 

3. Methodology 

ASTRID adopts a strict methodology flow to successfully 

detect malware from noisy API call sequences with the help 

of GAN power for effective detection. The methodology 

involves data preprocessing, adversarial training, and 

designing model architecture so that the model can 

distinguish between benign and malware sequences. In 

addition, the evaluation methodology checks the model's 

generalization by using an unseen dataset so that it can be 

applied in real-world environments. Figure 1 shows the flow 

diagram of the methodology used in ASTRID. 

Figure 1: Flow Diagram of ASTRID 

 

Dataset 
In order to train and test the ASTRID model efficiently, three 

datasets are used, one for each role in the process. The first 

dataset, Dynamic API Call Sequence, consists of sequences 

of dynamic API call Sequences3 in CSV format, both with 

benign and malware data marked appropriately. This dataset 

has 1,079 benign and 42,797 malware samples and is utilized 

during the model training phase to offer useful real-system 

behavior sequences on which the model can be trained. The 

 
3https://www.kaggle.com/datasets/ang3loliveira/malware-
analysis-datasets-api-call-sequences 

MalBehavD-V1 dataset4, the second dataset in use, deals with 

malware behavior and has 1,285 benign and 1,285 malware 

sequences. This data set adds diversity to training the model, 

covering various malware and their actions in diverse 

situations, which is important for developing a strong model 

that can detect a broad variety of malicious actions. The third 

one, APIMDS Dataset5, is utilized solely for the model's 

generalization performance test. This external validation set, 

which comprises 3,137 benign, 5,878 unlabelled and 14,131 

malware sequences, guarantees that the model's performance 

is measured on unseen data, reflecting its stability and 

capacity to act well in real-world situations. 

 

With these three datasets, two are kept for training and the 

model gets to learn different patterns, while the third one is 

an unseen test set for evaluating the generalization of the 

model. This ensures that the model is not overfit to the 

training data and is able to identify malware in new, 

previously unseen patterns correctly. 

Dataset Preprocessing 

The preprocessing pipeline for the data starts by cleaning the 

Dynamic API Call Sequence dataset, in which the `hash` 

column is deleted, and rows with missing values are deleted. 

The dataset is grouped by malware type to solve the issue of 

class imbalance, and a maximum of 4000 samples are taken 

from each class. Stratified K-Fold cross-validation is 

subsequently used to ensure even class balance across folds, 

and the dataset is divided into training and test sets according 

to the fold setup. To further address class imbalance in the 

training set, SMOTE (Synthetic Minority Over-sampling 

Technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is 

used to create synthetic samples for the minority class. Lastly, 

feature scaling is done with the StandardScaler to scale the 

training and test data to a consistent scale for all features. This 

preprocessing method prepares the dataset well for model 

training with balanced classes and scaled features, thus 

enhancing the model's generalization and performance. 

 

Preprocessing for the MalBehavD-V1 Dataset begins with 

tokenizing sequences of API calls. In this case, API calls 

from different columns are combined into a single string per 

sample and tokenized with Keras's `Tokenizer`. It converts 

the string sequences into a numeric form that is suitable for 

input into machine learning models. Sequences are padded to 

a constant length by `pad_sequences` so that all input 

sequences are of the same length, with a maximum of 100. 

For target labels, One-Hot Encoding (Samuels, 2024) is 

employed so as to convert categorical labels into a binary 

matrix format and, therefore, convert them into an 

4 https://github.com/mpasco/MalbehavD-V1 
5 https://ocslab.hksecurity.net/apimds-dataset 
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appropriate format for handling classification problems. 

Other than text processing, the numerical columns of the 

dataset are normalized using Min-Max Scaling (Muhammad 

Ali, 2022) such that all the features are within the range [0, 

1]. This preprocessing technique is important in order to 

normalize the input features, especially for feature scaling-

sensitive models. The dataset is then split into features (`X`) 

and target labels (`y`) after preprocessing. This preprocessing 

pipeline renders the MalBehavD-V1 dataset machine 

learning model-ready with properly tokenized, encoded, and 

scaled features to facilitate accurate training and testing. 

 

The Malware API Dataset preprocessing pipeline starts from 

reading the data from a CSV file utilizing Python's native 

`csv` module. The malware class is mapped to binary labels, 

such that "not-a-virus" samples are assigned a label 0 

(benign), and the rest are assigned a label 1 (malicious). API 

call strings are concatenated into one, space-separated string, 

which is added to a list together with the label and SHA256 

hash. 

 

Min-Max scaling (Muhammad Ali, 2022) is used on any 

numeric columns so that all features are in the range [0, 1], 

which is especially helpful for scale-sensitive models. Next, 

the API call sequences are tokenized by Keras's `Tokenizer` 

to transform each string sequence of API calls into a sequence 

of integers corresponding to the words (API calls). The 

sequences are subsequently padded to a consistent length of 

300 with `pad_sequences` so that the input sequences are all 

of the same length. The target labels are One-Hot Encoded 

(Samuels, 2024) by `OneHotEncoder`, converting the binary 

class labels into a binary matrix form appropriate for multi-

class classification problems. 

Dataset Preparation 

Training 

The dataset preparation starts with normalizing the binary 

labels of both datasets. The MalBehavD-V1 dataset and the 

Malware API Dataset are normalized as binary values for 

labels, where 0 denotes benign and 1 denotes malicious 

samples. In the MalBehavD-V1 dataset, API call sequences 

are formed by reducing all columns (except index, malware, 

and fold) into one string per sample. The Malware API 

Dataset also follows the same procedure, wherein sequences 

of calls to APIs are formed by concatenating strings of 

individual API calls. Then, sequences of both datasets are 

tokenized with the help of Keras's Tokenizer, and padding is 

done so that both datasets have similar sequence lengths. The 

training set is formed by concatenating both datasets' 

sequences as well as their labels. Moreover, the test set of the 

Malware API Dataset is developed by dividing it into training 

and test sets. These sets also contains noise to mimic the real 

world scenario to facilitate better generalizability of the 

model. The final combined dataset (X_combined and 

y_combined) is divided into training, validation, and test 

subsets, with the training set being the primary input to model 

training. Instances of DataLoader are developed for 

facilitating efficient batching of data such that training, 

validation, and testing are performance-tuned. The method 

utilizes both datasets to their maximum, such that model 

training is carried out on a sufficient blend of properly 

balanced data. This process is shown in Algorithm 1. 

 

Testing 

For APIMDS as Dataset 3, which is held out entirely for 

testing, the sequences of API calls are handled in much the 

same way as the training datasets. The sequences are first 

tokenized using the same tokenizer used on the training data 

so that the datasets are consistent. These tokenized sequences 

are then padded to a standard length to ensure the input length 

of the model. Following tokenization and padding, the target 

labels are one-hot encoded to make the data classification-

ready. 

 

The processed Dataset 3 is reserved independently of the 

training data to evaluate the model's capacity for generalizing 

over unseen examples. The dataset is only employed for 

testing the performance of the trained model and verifying 

that the outcomes accurately express its applicability in the 

real world. By reserving the use of Dataset 3 only for testing, 

we are certain that the measures of evaluation (e.g., accuracy, 

precision, recall, and F1-score) come from data that the 

model has never seen while training, thus reflecting a true 

evaluation of its ability to generalize. 

 

Experimental Setup 

The experimental configuration for model training consisted 

of the use of a Generative Adversarial Network (GAN) 

framework. Training was done under the environment of 

Google Colab with L4 TPUs support, thus providing the 

calculations with a great boost and enabling the processing of 

large data in an efficient manner. The configuration played 

an important role in handling the large process of model 

training, especially through the use of high-dimensional data 

such as sequences of API calls. 

 

Hyperparameters used in the current experiment were set to 

balance model performance against computational cost. The 

embedding size was 128, the recurrent layer's hidden size was 

256, and the batch size was 64. The model was trained for 20 

iterations with the learning rate held constant at 0.0004 to 

facilitate slow convergence. For additional improvement in 

the performance of the model, a Dropout regularization has 

been used at a rate of 0.3 both in the Generator and in the 

Discriminator to avoid overfitting and enhance the 

generalization of the model. 
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Cross-validation was conducted with Stratified K-Fold (5 

folds) to ensure that the performance of the model would be 

estimated by using various splits in the data. This enabled the 

estimation of the model's robustness and generalizability 

across various folds with stable and solid estimates of 

performance. 

Model Training 

The architecture used in this experiment is a Generative 

Adversarial Network (GAN) architecture that consists of two 

neural networks: the Generator and the Discriminator. The 

Generator tries to generate artificial sequences simulating 

real API calls, while the Discriminator attempts to distinguish 

between real API call sequences from the dataset and the 

artificially created ones by the Generator. The adversarial 

process between the two components allows the model to 

progressively improve in the sense that it can increasingly 

discriminate between benign and bad sequences. 

 

The Generator starts by taking random noise as input and 

reconstructing it as a sequence of API calls using Gumble-

Softmax Sampling (Li, et al., 2020) as shown in eq (1). It first 

inserts the input noise into a continuous space through an 

embedding layer, and then feeds this embedded 

representation into a GRU (Gated Recurrent Unit) layer. 

GRUs are particularly well-suited for sequence data since 

they help in capturing time step dependencies, which is 

crucial to analyze API calls occurring in sequences. The 

output from the GRU layer then undergoes a fully connected 

layer to produce the final sequence, which is designed to be 

similar to actual API call data. 

 

𝑦 = Softmax (
log(𝑦̂)+𝑔

τ
)       eq (1) 

 
Conversely, the Discriminator takes sequences of API calls, 
real and fake, and returns a probability indicating whether or 
not the sequence is real or fake. Like the Generator, the 
Discriminator employs an embedding layer for representing 
the input sequence as vectors. These sequences are 
subsequently processed through a bidirectional GRU, which 
reads the sequence both forward and in reverse to capture 
temporal dependencies more exhaustively. The 
Discriminator uses multihead attention as well, allowing it to 
pay attention to different areas of the sequence at different 
times, improving its capacity for recognizing complex 
patterns typical of malware activity. 
 
The adversarial training process between the Generator and 
Discriminator is where the model learns at its core. The 
Generator tries to generate more realistic fake sequences, 
and the Discriminator tries to get better at discriminating 

real sequences from fake ones. This aligns with the 
Wasserstein GAN with Gradient Penalty (WGAN-GP) (Fan, et 
al., 2022) framework as shown in eq(2), which stabilizes 
training and prevents problems like mode collapse, where 
the Generator produces few or repeating sequences. 
 
ℒ𝒟 = 𝐸𝑥∼𝑃𝑥̂

[𝐷(𝑥̂)] − 𝐸𝑥∼𝑃𝑥
[𝐷(𝑥)] + λ ⋅

𝐸𝑥∼𝑃𝑥̂
[(|∇𝑥𝐷(𝑥̂)|2 − 1)2]     eq (2) 

Both the Discriminator and Generator use the Adam 

optimizer, 0.0004 learning rate, and the model is trained for a 

total of 20 epochs. The two networks both use regularization 

techniques like Dropout to prevent overfitting and improve 

Algorithm 1: Dataset Preparation for Training 

Input: Dataset 1, Dataset 2 
Output: Training, Validation, and Test DataLoader 

1. Normalize binary labels: 
2. Label the first dataset as 0 for benign and 1 for malicious 

samples 
3. Label the second dataset as 0 for benign and 1 for 

malicious samples 
4. Build API call sequences: 
5. Join all API call features for each sample in the first dataset 
6. Join all API call features for each sample in the second 

dataset 
7. Tokenization and Padding: 
8. Initialize Tokenizer for text sequences 
9. Fit tokenizer on both datasets’ API call sequences 
10. Convert API call sequences from first dataset into token 

sequences 
11. Convert API call sequences from second dataset into 

token sequences 
12. Apply padding to both token sequences to a fixed length 
13. Prepare and Clean the second dataset: 
14. Join API call features for each sample in the second 

dataset 
15. Tokenize and pad the API call sequences in the second 

dataset 
16. Split dataset into training and test: 
17. Perform a train-test split for the second dataset, creating 

training and test sets 
18. Combine datasets: 
19. Concatenate tokenized and padded sequences from both 

datasets 
20. Concatenate corresponding labels from both datasets 
21. Split combined data into training, validation, and test sets: 
22. Split the combined data into training and temporary sets 
23. Split the temporary data into validation and test sets 
24. Create DataLoader for training, validation, and test: 
25. Create DataLoader for the training set 
26. Create DataLoader for the validation set 
27. Create DataLoader for the test set 
28. Return: Training DataLoader, Validation DataLoader, Test 

DataLoader 
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the model's generality. Gradient accumulation is also used to 

further stabilize the training so that the model is able to 

handle higher batch sizes even when under memory 

constraints. 

 

Model performance is gauged by some key metrics like 

precision, recall, F1 score, AUC (Area Under the Curve), and 

accuracy. The AUC metric, in particular, is important in 

deciding how the model distinguishes between classes at 

every decision boundary. These metrics were tracked during 

training and cross-validation to see the model's improvement 

over time. This process is shown in Algorithm 2. 

 

Training Process 

Training is performed through an adversarial interaction 

between the Discriminator and the Generator. The 

Discriminator is first trained to effectively classify real and 

fake sequences. It is given real API sequences from data and 

fake sequences generated by the Generator. The 

Discriminator is trained such that it maximizes effective 

classification of these sequences, with binary cross-entropy 

loss as its objective function. The Generator, on the other 

hand, is trained to generate fake sequences that can deceive 

the Discriminator into marking them as real. The Generator's 

loss is calculated on the output of the Discriminator, as well 

as an additional feature matching loss, as shown in eq(3), that 

encourages the Generator to create sequences with the same 

statistical properties as the real data. 

 

ℒ𝒢 = 𝐸𝑥∼𝑃𝑥
[|𝐹𝑥 − 𝐹𝑥|2]       eq (3) 

 

In training, the WGAN-GP loss function is applied to the 

Discriminator to apply a Gradient Penalty as shown in eq(4), 

ensuring that the training gradients are smooth and improving 

the optimization stability. This is extremely crucial in 

adversarial cases where the Generator and Discriminator 

engage in an endless game of equipping one another. 

 

ℒℊ𝓅 = 𝐸𝑥∼𝑃𝑥̂
[(|∇𝑥𝐷(𝑥̂)|2 − 1)2]    eq (4) 

 

As the model was being trained, accuracy and the AUC curve 

were monitored across epochs. The first and fifth fold AUC 

curves are shown in Figures 2 and 3, respectively, and they 

illustrate how the model learned through training to 

distinguish between real and fake sequences. The training 

accuracy plot also shows steady improvement over time, 

showing that the model was learning and improving at 

distinguishing malware with accuracy. 

 

 

 

Testing 

For the test phase, Dataset 3, saved as an unseen test set, 
was utilized to test the performance of the model after 
training using Datasets 1 and 2. Sequences from Dataset 3 
were tokenized and padded to have uniformity with the 
training input format. The preprocessed data was then 
transformed into PyTorch tensors for ease of utilization 
during model testing. 
 
A DataLoader for Dataset 3 was implemented to batch the 
data and feed it into the model in the testing phase. The 
batch size for testing was the same as that used in training 
to ensure equal comparison. This DataLoader served to feed 
batches of API call sequence and their labels through the 
trained Discriminator for evaluation. 
 

Figure 2: AUC Training Curve in 1st Fold 

Algorithm 2: Model Training Procedure 

Input: Training Data (X_train), Training Labels (y_train) 
Output: Trained generator and discriminator 
1. Initialize Generator and Discriminator models 
2. Initialize Optimizers (Adam) for both Generator and 

Discriminator 
3. Initialize Cross-Entropy Loss Function for the 

Generator and MSE Loss for the Discriminator 
4. For each epoch: 
5. for batch in train loader do 
6. Train Discriminator: 
7. Sample real sequences from X train and generate fake 

sequences from Generator 
8. Compute the real loss and fake loss using the 

Discriminator 
9. Compute the Gradient Penalty loss and backpropagate 

to update Discriminator 
10. Update Discriminator parameters with Adam 

optimizer 
11. Train Generator: 
12. Generate fake sequences using noise input 
13. Compute Discriminator output for fake sequences 
14. Calculate the Generator loss and feature matching loss 
15. Backpropagate and update Generator parameters 

with Adam optimizer 
16. end for 
17. Return: Trained Generator and Discriminator 
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The model's performance on Dataset 3 was checked using 
critical metrics such as precision, recall, F1 score, AUC (Area 
Under the Curve), and accuracy. The choice of these metrics 
was to give an all-around view of the model's capacity to 
classify malware correctly. The AUC score specifically 
calculates the model's capacity to differentiate malicious and 
harmless samples for all possible thresholds, giving a better 
evaluation of its performance. 

Observations 

To compare and assess the performance of various models, 

the training of BiLSTM (Figure 4), Transformer (Figure 5), 

and Vanilla GAN + GRU (Figure 6) models with the same 

setup as ASTRID (Figure 1) is done. This involved the same 

preprocessing of the dataset, tokenization, padding, and 

training process to ensure that the comparison would be fair 

across all models. With the same framework and 

hyperparameters, it can be more equally compared how well 

every model does in malware detection via API call 

sequences. 

 

The Transformer model performs best with a high AUC of 

approximately 0.98, and has smooth learning throughout the 

epochs. Comparatively, the BiLSTM and Vanilla GAN + 

GRU models experience some fluctuation in their AUC 

curves, with BiLSTM peaking at an AUC of approximately 

0.822 and Vanilla GAN + GRU settling at 0.818. 

 

ASTRID also has a very good performance comparable to the 

Transformer model with an AUC of 0.98 and a consistent rise 

during the training. This shows that the usage WGAN-GP 

architecture was successful in identifying malware as well as 

having high generalization capability to unknown data and 

thus can compare to other state-of-the-art models. 

 

 

 

4. Results 

Evaluation Criteria 

The models have been evaluated based on the following 

criteria: 

1. Accuracy: It is the proportion of correct predictions 

over the total number of instances evaluated (Hossin & 

M.N, 2015). It can also be said as the ratio of correct 

classifications to the total classifications, as shown in 

eq (5). 

 

Accuracy =
TP+TN

Total Samples
    eq (5) 

 

 

Figure 3: AUC Training Curve in 5st Fold 
Figure 4: BiLSTM AUC Training Curve 

Figure 6: Transformer AUC Training Curve 

Figure 5: Vanilla GAN + GRU AUC Training Curve 
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2.  Precision: It is the proportion of correctly classified 

instances among all the classified instances under a 

certain category (Pinto, Gonçalo Oliveira, & Alves, 

2016). It can also be said as the ratio of true positives 

to that of everything classified as positive, as shown in 

eq (6). 

 

Precision =
TP

TP+FP
     eq (6) 

 

 

3. Recall: It is the proportion of correctly classified 

instances under a certain category (Pinto, Gonçalo 

Oliveira, & Alves, 2016). It can also be said as the ratio 

of true positives to correct classifications. It is also 

known as the true positive rate or TPR, as shown in eq 

(7). 

 

Recall =
TP

TP+FN
     eq (7) 

 

 

4. F1 Score: The harmonic mean of precision and recall, 

balancing their trade-offs. 

Comparative Analysis of Models Trained 

Table 1 shows the comparative analysis of the Models 

Trained on the dataset and the methodology of ASTRID. 

 

Table 1: Training Data Comparison 

Model AUC Accuracy F1 Score 

Transformers 0.9938 0.8309 0.8994 

BiLSTM 0.8215 0.8007 0.8836 

Vanilla GAN + 

GRU 

0.8160 0.8040 0.8853 

ASTRID 0.9878 0.9699 0.9699 

 

Table 2 shows the testing data results 

 

Table 2: Testing Data Comparison 

Model AUC Accuracy F1 Score 

Transformers 0.9595 0.8646 0.9274 

BiLSTM 0.5356 0.8644 0.9273 

Vanilla GAN 

+ GRU 

0.5000 0.8644 0.9273 

ASTRID 0.9508 0.9553 0.9541 

 

Overall, the performance data in Tables 1 and 2 demonstrate 

the relatively higher performance of the ASTRID model than 

the comparative state-of-the-art models during the training 

and testing phases. From Table 1, we see that ASTRID 

outperformed not just the Transformers, but also the BiLSTM 

and Vanilla GAN + GRU models, indicating that the 

ASTRID model exhibited superior performance in the 

training stage, from learning and generalizing on the training 

set.   

 

In Table 2, when testing the models on the test dataset, we 

observe that ASTRID again performed well on the other 

models, having the highest precision and recall. As evident 

from the data and inspection of the Tables, ASTRID has not 

only attained good performance during the training phase, but 

indeed was able to generalize during the testing phase on the 

test data, making this model the best at detecting malware in 

this specific case. Meanwhile, even though the Transformer 

model performed remarkably (however, no performance data 

were presented to surpass ASTRID), the BiLSTM and 

Vanilla GAN + GRU models performed much less well 

(compared to ASTRID), with larger performance variation 

observed primarily in terms of AUC and accuracy. 

Comparative Analysis with State-of-the-Art Models 

Table 3 Shows the comparison between ASTRID and other 

State-of-the-Art Models 

ASTRID not only matches or slightly surpasses the highest 

classification accuracy obtained by existing models (e.g., 

Transformer), it also achieves better AUC (Area Under the 

ROC Curve) whereas existing models obtain either a similar 

AUC or worse, demonstrating that ASTRID achieves greater 

discriminative ability across models (e.g., essential 

predicting classes) when the classification task is revised to 

adjust threshold level used (e.g., 0, 0.3, 0.5, 0.8). In summary, 

ASTRID is able to show greater discriminative ability 

because it trains adversarial synthetic sequences that 

incorporate this perturbation to induce better robustness and 

generalization into the model, which, to the best of our 

knowledge, has been absent in existing literature. Models 

such as Random Forest will not only perform poorly with 

adversarially perturbed instances but even more sophisticated 

architectures (e.g., CNN-LSTM) that are not yet considered 

models capable of addressing or tolerating adversarially 

perturbed inputs. Therefore, ASTRID explicitly trains on 

adversarial perturbation, thus improving resilience and 

performance. 

5. Conclusion and Future Work 

The ASTRID model shows great potential for detecting 

malware through API call sequence data. The use of a 

Generative Adversarial Network (GAN) approach allows 

ASTRID to overcome the challenge of noisy and adversarial 

perturbed data, producing strong results in both training and 

testing. Inserting adversarial synthetic sequences into the 

training set develops a generalisation capacity in models; 

however, ASTRID not only develops a generalisation 

capacity, but also develops robustness by training explicit 

noisy inputs that traditional models do not explicitly train on. 
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Table 3: Comparative Analysis of ASTRID with State-of-the-Art Methods 
  

 

 

The model performed with a slight drop in AUC to almost 

0.98 with an accuracy of 95.53\%. ASTRID reduces false 

positives, missing malware, and falsely identifying benign by 

being more robust to noisy adversarial conditions, showing a 

stronger performance than other state-of-the-art models, such 

as BiLSTM, Vanilla GAN + GRU, and Transformer, because 

it exhibits higher values for precision and recall in a real-

world malware detection task. 

Future Work 

There are quite a few areas where ASTRID can improve, 

notwithstanding the success of ASTRID. Future work could  

investigate the incorporation of more effective attention 

mechanisms and transformer-based architectures to further 

optimize sequence representation learning. The 

generalizability of the model to other platforms and 

environments could be evaluated through cross-platform 

datasets. Given the nature of malware and its increasing 

complexity, eventually, ASTRID could evolve to provide 

real-time detection as well as incorporate more challenging 

and varied adversarially perturbed datasets to enhance its 

robustness. Ultimately, being able to work with real-time 

monitoring systems would improve ASTRID's scalability 

and use in operational settings. 
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